首页> 外文OA文献 >Pressure Distribution Measurements on the MK 14-1 and MK 15-1 Torpedoes
【2h】

Pressure Distribution Measurements on the MK 14-1 and MK 15-1 Torpedoes

机译:MK 14-1和MK 15-1鱼雷的压力分布测量

摘要

This report covers measurements of the pressure distributionudaround the bodies of the Mk-1.4-1 and Mk 15-1 Torpedoes, both when equipped with the standard tail assembly and with a shroud ring tail added, and includes studies of the effect on the pressure distribution of variations in yaw and pitch angles, velocity, and static pressure (i.e., submergence). These two torpedoes are both 21 inches in diameter, made up with heads and afterbodies havingudthe same external shape, and both are equipped with identical fin and rudder assemblies. The only difference between their external shapes, therefore is due to the different lengths of cylindrical mid-sections, and resultant different over-all lengths. (The Mk 1.4-1 is 20.5 ft long, and the Mk 1.5-1 is 24 ft long). Theudtests were made on 2-inch diameter models (model scale 1:10.5).ududIn addition to providing a general picture of the pressureuddistribution as affected by the different variables the data presented herein are useful in determining the best locations and arrangements for the pressure intakes to the immersion mechanism and to the depth and roll recorder, and also as a check on cavitation measurements. Because the pressures on the fins themselves were not measured in these tests, the data cannot be used to calculateudthe over-all forces acting on the complete torpedoududThe main observations and conclusions are summarized in theudfollowing paragraphs:udud1. Within the range of these tests the pressure, distribution, as presented in terms of p/q was found to be independent of variations in velocity and static pressureudor submergence. That is, the difference between theudpressure at any station on the body and the static pressureudof the undisturbed water is independent of theudstatic pressure and is directly proportional to theudvelocity head.udud2. The addition of the shroud ring around the fins of theseudtorpedoes has no measurable effect on the pressure distribution.udud3. The pressure distributions around the head and afterbodyudof the Mk 1.5 i-1 ere found to be practically identicaludwith those of the Mk 14-1. That is, increasing theudlength of the cylindrical mid-section does not, in thisudcase affect the pressure distribution on the head orudafterbody.udud4. The pressure on the surface of these torpedoes equals theudstatic pressure of the undisturbed water at two positions,udone on the projectile nose and one on the afterbodyud(See Figures 12, 18, 24, and 30). Ahead and behind theseudtwo stations the pressure is above static, while betweenudthe two (which includes about 83% of the over-all lengthudof the Mk 14-1, and 86% on the Mk 15-1) the pressure isudbelow static.udud5. The position on the afterbody at which P = P_0udis only slightly affected by yaw or pitch angles up to 3°.udud6. On the basis of these measurements, made without rotatingudpropellers, it appears that the best arrangement for theudpressure intake to the immersion mechanism would beudthrough a piezometer ring connecting to four pressureudtaps uniformly distributed about the circumference of theudafterbody and about 35 inches ahead of the end of theudtail. The pressure imposed on the diaphragm would thenudbe equal to true hydrostatic pressure, and practicallyudindependent of yaw or pitch The influence of the propellersudmay shift this point slightly either aft or forward.udud7. Placing the pressure take-off for the depth and roll recorder where P = P_0 on the nose is not recommended because P changes rapidly in this zone and large errorsudcan result from small inaccuracies in locating the connection Connection of the depth and roll recorder toudthe point of the afterbody where P = P_0 is, of course,udphysically impracticable. It is recommended, therefore,udthat the pressure intake be left unchanged and, if necessary, determine the corrections to be applied to theuddepth record.
机译:该报告涵盖了Mk-1.4-1和Mk 15-1鱼雷主体周围压力分布的测量结果,包括标准尾翼组件和附加的罩环尾翼,还包括对鱼雷影响的研究。偏航角和俯仰角,速度和静压力(即淹没)变化的压力分布。这两个鱼雷直径均为21英寸,由外形相同的头部和后躯组成,并且都装有相同的鳍和舵组件。因此,它们的外部形状之间的唯一差异是由于圆柱形中间部分的长度不同,以及由此导致的总长度不同。 (Mk 1.4-1长20.5英尺,Mk 1.5-1长24英尺)。 udtest是在2英寸直径的模型上进行的(模型比例为1:10.5)。 ud ud除了提供受不同变量影响的压力 ud分布的一般情况之外,此处提供的数据可用于确定最佳浸入机构和深度和倾角记录仪的压力入口的位置和布置,以及对气穴测量的检查。由于在这些测试中未测量鳍本身的压力,因此该数据不能用于计算对整个鱼雷的总体作用力 ud ud 以下段落总结了主要的观察结果和结论: ud ud1。在这些测试的范围内,发现以p / q表示的压力,分布与速度和静压/沉浸的变化无关。也就是说,身体上任何位置的压差与原状水的静压之间的差与压降无关,并且与压头直接成正比。在这些鱼雷的鳍片周围增加护罩环对压力分布没有可测量的影响。发现Mk 1.5 i-1头部和后肢周围的压力分布与Mk 14-1几乎相同。也就是说,在这种情况下,增加圆柱形中间部分的长度不会影响头部或后身的压力分布。这些鱼雷表面上的压力等于未受干扰的水在两个位置上的“静压力”,即在射弹鼻上的乌迪纳德和在后躯体上的一个乌迪纳德(见图12、18、24和30)。在这两个位置之前和之后,压力高于静态,而在两个位置之间(包括Mk 14-1全长的ud的83%,Mk 15-1的全长的86%) ud低于静态值。 ud ud5。 P = P_0 udis在车身上的位置受偏航角或最大3°的俯仰角的影响很小。 ud ud6。在没有旋转螺旋桨的情况下进行的这些测量的基础上,看来浸入机构的 u压力吸入的最佳布置将是通过一个压强计环,该压力计环连接到四个沿 udbody圆周均匀分布的压力 udp并在尾部的前面大约35英寸。这样,施加在膜片上的压力将等于真实的静水压力,并且实际上与偏航角或螺距无关。螺旋桨的影响会使该点向后或向前稍微移动。不建议将P = P_0的深度和倾角记录仪的压力放到鼻子上,因为P会在该区域快速变化,并且由于连接位置的误差较小,会导致较大的误差。 当然,从后人的角度来看P = P_0是不可行的。因此,建议 ud保持压力摄入不变,并在必要时确定要应用于 uddepth记录的更正。

著录项

  • 作者

    Levy Joseph;

  • 作者单位
  • 年度 1945
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号