首页> 外文OA文献 >Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse
【2h】

Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

机译:将微生物电化学技术与正渗透和膜生物反应器相结合:低能耗废水处理,能量回收和中水回用

摘要

Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination.In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generatedmore power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses.Membrane bioreactors incorporate semipermeable membranes within a biological wastewater treatment process. The anaerobic electrochemical membrane bioreactor described here integrates a microbial electrolysis cell with a membrane bioreactor using conductive hollow fiber membrane to produce hydrogen gas, treat wastewater and reclaim treated water. The energy recovered as hydrogen gas in this system was sufficient to offset all the electrical energy requirements for operation.The findings from these studies significantly improve the prospects for simultaneous wastewater treatment, energy recovery and water reclamation in a single reactor but challenges such as membrane biofouling and conversion of hydrogen to methane by methanogenesis require further study.
机译:废水处理需要消耗大量能源,现代废水处理工艺消耗的水量为0.6 kWh / m3,其中一半需要曝气。考虑到废水包含大约2 kWh / m3的能量,并且是一种可靠的替代水资源,因此,捕获部分能量并回收水将抵消甚至消除废水处理的能源需求,并提供增加传统供水的手段。微生物电化学技术是一种新颖的技术平台,它利用能够在细胞外部产生电流的细菌从废水中回收能量。这些细菌不需要氧气来呼吸,而是使用不溶性电极作为末端电子受体。本文研究了两种类型的微生物电化学技术:1)产生电能的微生物燃料电池。 2)微生物电解池,在增加外部电源的情况下会产生氢气。微生物电化学技术本身不能达到足够高的处理水平。将微生物电化学技术与新兴的和建立的基于膜的处理工艺相结合的创新方法可以改善废水处理和再生处理水的总体范围。正向渗透是一种新兴的基于低能膜的海水淡化技术,在正向渗透中,水通过渗透梯度驱动,流经半透膜。本文所述的微生物渗透燃料电池将微生物燃料电池与正向渗透相结合,实现废水处理,能量回收和部分脱盐。与传统的使用离子交换膜的微生物燃料电池相比,该系统无需曝气,并通过最小化电化学损失来产生更多的功率。膜生物反应器在生物废水处理过程中结合了半透膜。本文所述的厌氧电化学膜生物反应器将微生物电解池与膜生物反应器集成在一起,该膜生物反应器使用导电中空纤维膜产生氢气,处理废水和回收处理过的水。在该系统中以氢气形式回收的能量足以抵消所有运行所需的电能。这些研究结果显着改善了单个反应器中同时进行废水处理,能量回收和水回收的前景,但面临膜生物污染等挑战。甲烷通过甲烷生成转化为甲烷需要进一步研究。

著录项

  • 作者

    Werner Craig M.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-20 20:25:11

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号