首页> 外文OA文献 >Cardan Gear Mechanism versus Slider-Crank Mechanism in Pumps and Engines
【2h】

Cardan Gear Mechanism versus Slider-Crank Mechanism in Pumps and Engines

机译:泵和发动机中的万向齿轮机构与曲柄滑块机构

摘要

In machine design we always want to save space, save energy and produce as much power as possible. We can often reduce accelerations, inertial loads and energy consumption by changing construction. In this study the old cardan gear mechanism (hypocycloid mechanism) has been compared with the conventional slider-crank mechanism in air pumps and four-stroke engines. Comprehensive Newtonian dynamics has been derived for the both mechanisms. First the slidercrank and the cardan gear machines have been studied as lossless systems. Then the friction losses have been added to the calculations. The calculation results show that the cardan gear machines can be more efficient than the slider-crank machines. The smooth running, low mass inertia, high pressures and small frictional power losses make the cardan gear machines clearly better than the slider-crank machines. The dynamic tooth loads of the original cardan gear construction do not rise very high when the tooth clearances are kept tight. On the other hand the half-size crank length causes high bearing forces in the cardan gear machines. The friction losses of the cardan gear machines are generally quite small. The mechanical efficiencies are much higher in the cardan gear machines than in the slider-crank machines in normal use. Crankshaft torques and power needs are smaller in the cardan gear air pumps than in the equal slider-crank air pumps. The mean crankshaft torque and the mean output power are higher in the cardan gear four-stroke engines than in the slider-crank four-stroke engines in normal use. The cardan gear mechanism is at its best, when we want to build a pump or an engine with a long connecting rod (≈ 5⋅crank length) and a thin piston (≈ 1.5⋅crank length) rotating at high angular velocity and intermittently high angular acceleration. The cardan gear machines can be designed also as slide constructions without gears. Suitable applications of the cardan gear machines are three-cylinder half-radial engines for motorcycles, sixcylinder radial engines for airplanes and six-cylinder double half-radial engines for sport cars. The applied equations of Newtonian dynamics, comparative calculations, calculation results (tables, curves and surface plots) and recommendations presented in this study hold novelty value and are unpublished before. They have been made and written by the author first time in this study.
机译:在机器设计中,我们始终希望节省空间,节省能源并产生尽可能多的功率。我们通常可以通过更改结构来减少加速度,惯性负载和能耗。在这项研究中,已将旧的万向齿轮机构(摆线机构)与气泵和四冲程发动机中的传统曲柄曲轴机构进行了比较。两种机理均已得到全面的牛顿动力学。首先,滑动曲柄和万向齿轮机已被研究为无损系统。然后将摩擦损失添加到计算中。计算结果表明,万向齿轮机的效率要高于曲柄齿轮机。平稳的运行,低的质量惯性,高压和小的摩擦功率损耗使万向齿轮机明显优于曲柄齿轮机。当保持齿间隙较小时,原始万向齿轮结构的动齿载荷不会增加得很高。另一方面,一半尺寸的曲柄长度会在万向齿轮机中引起较高的轴承力。万向齿轮机的摩擦损失通常很小。在正常使用中,万向齿轮机的机械效率比曲柄齿轮机的机械效率高得多。万向齿轮气泵的曲轴扭矩和功率需求比等滑曲柄气泵的曲轴扭矩和功率需求小。在正常使用中,万向齿轮四冲程发动机的平均曲轴扭矩和平均输出功率要高于滑动曲柄四冲程发动机的平均曲轴扭矩和平均输出功率。万向齿轮机构处于最佳状态,当我们要制造具有长连杆(≈5⋅曲柄长度)和薄活塞(≈1.5⋅曲柄长度)的泵或发动机时,其应以较高的角速度和间歇性地旋转角加速度。万向齿轮机也可以设计成不带齿轮的滑动结构。万向齿轮机的合适应用是摩托车的三缸半径向发动机,飞机的六缸径向发动机和跑车的六缸双半径向发动机。这项研究中提出的牛顿动力学应用方程,比较计算,计算结果(表格,曲线和曲面图)和建议具有新颖性,因此以前尚未发表。它们是作者在本研究中首次制作和编写的。

著录项

  • 作者

    Karhula Jukka;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号