首页> 外文OA文献 >The role of brain tissue mechanical properties and cerebrospinal fluid flow in the biomechanics of the normal and hydrocephalic brain
【2h】

The role of brain tissue mechanical properties and cerebrospinal fluid flow in the biomechanics of the normal and hydrocephalic brain

机译:脑组织机械特性和脑脊液流量在正常脑积水和脑积水的生物力学中的作用

摘要

The intracranial system consists of three main basic components - the brain, theblood and the cerebrospinal fluid. The physiological processes of each of theseindividual components are complex and they are closely related to each other.Understanding them is important to explain the mechanisms behind neurostructuraldisorders such as hydrocephalus.This research project consists of three interrelated studies, which examine themechanical properties of the brain at the macroscopic level, the mechanics of thebrain during hydrocephalus and the study of fluid hydrodynamics in both thenormal and hydrocephalic ventricles. The first of these characterizes the porousproperties of the brain tissues. Results from this study show that the elasticmodulus of the white matter is approximately 350Pa. The permeability of thetissue is similar to what has been previously reported in the literature and is of theorder of 10-12m4/Ns. Information presented here is useful for the computationalmodeling of hydrocephalus using finite element analysis.The second study consists of a three dimensional finite element brain model. Themechanical properties of the brain found from the previous studies were used in theconstruction of this model. Results from this study have implications formechanics behind the neurological dysfunction as observed in the hydrocephalicpatient. Stress fields in the tissues predicted by the model presented in this studyclosely match the distribution of histological damage, focused in the white matter.The last study models the cerebrospinal fluid hydrodynamics in both the normaland abnormal ventricular system. The models created in this study were used tounderstand the pressure in the ventricular compartments. In this study, thehydrodynamic changes that occur in the cerebral ventricular system due torestrictions of the fluid flow at different locations of the cerebral aqueduct weredetermined. Information presented in this study may be important in the design ofmore effective shunts. The pressure that is associated with the fluid flow in theventricles is only of the order of a few Pascals. This suggests that large transmantlepressure gradient may not be present in hydrocephalus.
机译:颅内系统由三个主要基本组成部分-脑,血和脑脊液。这些各个组成部分的生理过程都很复杂且彼此密切相关,了解它们对于解释脑积水等神经结构性疾病背后的机制很重要。该研究项目包括三个相互关联的研究,旨在研究大脑在大脑中的力学特性。宏观水平,脑积水期间脑的力学以及对正常和脑积水的流体动力学的研究。其中第一个特征是脑组织的多孔性。这项研究的结果表明,白质的弹性模量约为350Pa。组织的渗透性类似于先前文献中报道的渗透性,约为10-12m4 / Ns。此处提供的信息对于使用有限元分析进行脑积水的计算建模非常有用。第二项研究包括三维有限元脑模型。从先前的研究中发现的大脑的主题力学特性被用于该模型的构建。这项研究的结果对脑积水患者所观察到的神经功能障碍背后的力学机制产生了影响。本研究模型预测的组织中的应力场与组织损伤的分布密切相关,集中在白质上。最后的研究对正常和异常心室系统中的脑脊液流体动力学进行建模。本研究中创建的模型用于了解心室腔内的压力。在这项研究中,确定了由于脑导水管不同位置的液体流动受限而在脑室系统中发生的流体动力学变化。本研究中提供的信息可能对设计更有效的分流器很重要。与心室中的流体流动相关联的压力仅为几帕斯卡的数量级。这表明脑积水可能不存在较大的跨膜压梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号