首页> 外文OA文献 >Metallisation of crystalline silicon thin-film solar cells: power losses, optimisation and interconnection
【2h】

Metallisation of crystalline silicon thin-film solar cells: power losses, optimisation and interconnection

机译:晶体硅薄膜太阳能电池的金属化:功率损耗,优化和互连

摘要

For thin-film crystalline Si solar cells on glass, metallisation is the key to converting what is otherwise a large-area diode, into a true photovoltaic device. The goal of metallisation is to produce devices with as high efficiencies and as little parasitic losses as possible. This is the inspiration here, where the metallisation of crystallised Si material deposited by plasma-enhanced chemical vapour deposition (PECVD) is of particular interest. The metallisation investigated is based on an interdigitated scheme, where the positive and negative electrodes of the device form a comb-like structure on the cell surface. This unique structure allows for a variety of investigations to take place aimed at both improving understanding of the scheme, and exploring methods to further increase efficiencies of metallised devices. The results are structured into three main parts. In the first part, power loss formulas, both absolute and normalised, were derived for the interdigitated-on-glass device structure. This allows for the characterisation and identification of the various resistive and shadow losses associated with metallisation. Optimal metallisation patterns were then realised by minimising these power losses. The second part involves metallisation itself, where device fabrication, sidewall formation, and the impact of thermal annealing were investigated. High-rate PECVD (>200 nm/min) was introduced as a means of combating one of the main drawbacks of PECVD. An efficiency of 5.9 % was obtained on this material - the first reported result for high-rate PECVD poly-Si thin-films on glass. In the third part, the concept of cell tabbing and interconnection using wire-bonding was developed. Both tabbing of individual cells and interconnection to form mini-modules were found to significantly reduce series resistance, boosting fill factors and efficiencies of metallised devices. An 8.05 % efficient individual cell and an 8.28 % two-cell mini-module were fabricated using this technique.Power loss formulas are derived, further insights into metallisation are presented, and the successful series-interconnection of cells has taken place. There is considerable scope for further improvements in device efficiency from metallisation, via the simultaneous consideration and implementation of multiple results found in this thesis: optimal metallisation patterns, post-metallisation annealing, wire-bonding tabbing/interconnection and encapsulation.
机译:对于玻璃上的薄膜晶体Si太阳能电池,金属化是将大面积的二极管转换成真正的光伏器件的关键。金属化的目的是生产具有尽可能高的效率和尽可能小的寄生损耗的器件。这就是这里的灵感,其中特别关注通过等离子体增强化学气相沉积(PECVD)沉积的结晶Si材料的金属化。所研究的金属化是基于叉指计划,其中设备的正电极和负电极在电池表面形成梳状结构。这种独特的结构允许进行各种调查,以提高对方案的理解,并探索进一步提高金属化器件效率的方法。结果分为三个主要部分。在第一部分中,推导了玻璃交叉指器件结构的功率损耗公式,包括绝对公式和归一化公式。这允许表征和识别与金属化相关的各种电阻和阴影损耗。然后通过最小化这些功率损耗来实现最佳的金属化图案。第二部分涉及金属化本身,在其中研究了器件制造,侧壁形成以及热退火的影响。引入高速率PECVD(> 200 nm / min)作为克服PECVD主要缺点之一的方法。该材料的效率为5.9%,这是玻璃上高速率PECVD多晶硅薄膜的首次报道结果。在第三部分中,提出了使用引线键合进行电池分片和互连的概念。发现单个电池的分片和互连以形成微型模块都可以显着降低串联电阻,提高填充系数和金属化器件的效率。使用该技术制造了效率为8.05%的单个电池和8.28%的两电池微型模块。得出了功率损耗公式,提出了进一步的金属化见解,并成功实现了电池的串联互连。通过同时考虑和实现本论文中发现的多种结果,从金属化进一步提高器件效率还有很大的余地:最佳金属化图案,金属化后退火,引线键合/互连和封装。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号