首页> 外文OA文献 >Effects of isotope doping on the phonon modes in graphene
【2h】

Effects of isotope doping on the phonon modes in graphene

机译:同位素掺杂对石墨烯中声子模的影响

摘要

Carbon related systems have attracted a large amount of attention of the science and technology community during the last few decades. In particular, graphene and carbon nanotubes have remarkable properties that have inspired applications in several fields of science and engineering. Despite these properties, creating structurally perfect samples is a difficult objective to achieve. Defects are usually seen as imperfections that degrade the properties of materials. However, defects can also be exploited to create novel materials and devices. The main topic of this thesis is studying the effect of isotope doping on the phonon properties of graphene. The advantage of the isotope enrichment technique is that only phonon frequencies or thermal properties can be modified without changing the electrical or chemical properties. We calculated the values of the phonon lifetimes due to isotope impurity scattering for all values of isotopic fractions, isotopic masses and for all wave-vectors using second order perturbation theory. We found that for natural concentrations of 13C, the contribution of isotopic scattering of optical modes is negligible when compared to the contribution from the electron-phonon interaction. Nevertheless, for atomic concentrations of 13C as high as [rho] = 0.5 both the isotopic and electron-phonon contributions become comparable. Our results are compared with recent experimental results and we find good agreement both in the 13C atomic density dependence of the lifetime as well as in the calculated spectral width of the G-band. Due to phonon scattering by 13C isotopes, some graphene phonon wave-functions become localized in real space. Numerical calculations show that phonon localized states exist in the high-energy optical phonon modes and in regions of flat phonon dispersion. In particular, for the case of in-plane optical phonon modes, a typical localization length is on the order of 3 nm for 13C atomic concentrations of [rho] ~~ 0.5. Optical excitation of phonon modes may provide a way to experimentally observe localization effects for phonons in graphene.
机译:在过去的几十年中,与碳有关的系统吸引了科学技术界的大量关注。特别地,石墨烯和碳纳米管具有非凡的特性,这些特性激发了在​​科学和工程学几个领域的应用。尽管具有这些特性,创建结构上完美的样品仍然是一个困难的目标。缺陷通常被视为会降低材料性能的缺陷。但是,也可以利用缺陷来创建新颖的材料和设备。本文的主要目的是研究同位素掺杂对石墨烯声子性质的影响。同位素富集技术的优势在于,仅声子频率或热性质可以被修改,而不会改变电性质或化学性质。我们使用二阶扰动理论计算了所有同位素分数,同位素质量以及所有波矢的因同位素杂质散射而产生的声子寿命。我们发现,对于自然浓度的13 C,与电子-声子相互作用的贡献相比,光学模式的同位素散射贡献可忽略不计。然而,对于13 C的原子浓度高达ρ= 0.5,同位素和电子-声子的贡献都变得可比。我们的结果与最近的实验结果进行了比较,我们在寿命的13C原子密度依赖性以及G谱带的计算光谱宽度方面都发现了良好的一致性。由于13 C同位素对声子的散射,一些石墨烯声子波函数变得局限在现实空间中。数值计算表明,在高能光学声子模式和平坦声子色散区域中存在声子局域态。特别地,对于面内光子声子模式,对于13 C〜0.5的13 C原子浓度,典型的定位长度约为3 nm。声子模的光激发可以提供一种方法来实验观察石墨烯中声子的定位效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号