首页> 外文OA文献 >Acausal Powertrain Modelling with Application to Model-based Powertrain Control
【2h】

Acausal Powertrain Modelling with Application to Model-based Powertrain Control

机译:因果动力总成建模及其在基于模型的动力总成控制中的应用

摘要

The automotive industry has long been searching for efficient ways to improve vehicle performance such as drivability, fuel consumption, and emissions. Researchers in the automotive industry have tried to develop methods to improve fuel consumption and reduce the emission gases of a vehicle, while satisfying drivability and ride comfort issues. Today, by developing computer/software technologies, automotive manufacturers are moving more and more towards modelling a real component (prototype) in a software domain (virtual prototype). For instance, modelling the components of a vehicle's powertrain (driveline) in the software domain helps the designers to iterate the model for different operating conditions and scenarios to obtain better performance without any cost of making a real prototype.The objective of this research is to develop and validate physics-based powertrain models with sufficient fidelity to be useful to the automotive industry for rapid prototyping. Developing a physics-based powertrain model that can accurately simulate real phenomenon in the powertrain components is of great importance. For instance, a high-fidelity simulation of the combustion phenomenon in the internal combustion (IC) engine with detailed physical and chemical reactions can be used as a virtual prototype to estimate physical prototype characteristics in a shorter time than it would take to build a physical prototype. Therefore, the powertrain design can be explored and validated virtually in the software domain to reduce the cost and time of product development.The main focus of this thesis is on development of an internal combustion engine model, four-cylinder spark ignition engine, and a hydrodynamic torque converter model. Then, the models are integrated along with the rest of a powertrain's components (e.g. vehicle longitudinal dynamics model) through acausal connections, which represents a more feasible physics-based powertrain model for model-based control design. The powertrain model can be operated at almost all operating conditions (e.g. wide range of the engine speeds and loads), and is able to capture some transient behaviour of the powertrain as well as the steady state response. Moreover, the parametric formulation of each component in the proposed powertrain model makes the model more efficient to simulate different types of powertrain (e.g. for a passenger car or truck).
机译:长期以来,汽车工业一直在寻找有效的方法来改善车辆性能,例如驾驶性能,燃油消耗和排放。汽车工业的研究人员已尝试开发各种方法来改善燃油消耗并减少车辆的排放气体,同时满足驾驶性能和乘坐舒适性问题。如今,通过开发计算机/软件技术,汽车制造商正越来越多地朝在软件领域(虚拟原型)中对真实组件(原型)建模的趋势。例如,在软件领域对车辆动力总成(传动系)的组件进行建模有助于设计人员针对不同的工作条件和场景对模型进行迭代,从而获得更好的性能,而无需花费任何成本即可制作出真实的原型。开发并验证具有足够保真度的基于物理学的动力总成模型,以用于汽车工业快速原型制作。开发能够精确模拟动力总成组件中实际现象的基于物理学的动力总成模型非常重要。例如,具有详细的物理和化学反应的内燃机(IC)燃烧现象的高保真模拟可以用作虚拟原型,以在比构建物理原型所需的时间短的时间内估算物理原型的特性。原型。因此,可以在软件领域虚拟地探索和验证动力总成设计,以减少产品开发的成本和时间。本论文的主要重点是开发内燃机模型,四缸火花点火发动机和内燃机。液力变矩器模型。然后,通过无因果关系将模型与动力总成的其余组件(例如车辆纵向动力学模型)集成在一起,这代表了一种更可行的基于物理的动力总成模型,用于基于模型的控制设计。动力总成模型可以在几乎所有工况下运行(例如大范围的发动机转速和负载),并且能够捕获动力总成的某些瞬态行为以及稳态响应。此外,所提出的动力总成模型中每个组件的参数表示使该模型更有效地仿真不同类型的动力总成(例如,用于乘用车或卡车)。

著录项

  • 作者

    Adibi Asl Hadi;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号