首页> 中国专利> 高度紧凑的多光学接头的光学流通池、可灵活配置的光学感测组件和用于原位实时光谱测量的系统

高度紧凑的多光学接头的光学流通池、可灵活配置的光学感测组件和用于原位实时光谱测量的系统

摘要

一种紧凑的光学流通池组件,其具有圆柱状壳体(20)和与所述圆柱状壳体连接的多个横向光学接头(100),所述圆柱状壳体(20)用于流入贯穿接口(80,90)的内部流体的通道,所述圆柱状壳体(20)引导不同频率的光平行于所述圆柱状壳体(20)内的所述流体通道行进至检测器(200),并且平行传播的光通过另一光学接头(100g)输出至另一光学诊断设备。

著录项

  • 公开/公告号CN103620378A

    专利类型发明专利

  • 公开/公告日2014-03-05

    原文格式PDF

  • 申请/专利权人 麻省理工学院;

    申请/专利号CN201280030262.1

  • 申请日2012-04-20

  • 分类号G01N21/05;G01N21/53;G01N15/14;

  • 代理机构北京信慧永光知识产权代理有限责任公司;

  • 代理人陈桂香

  • 地址 美国马萨诸塞州

  • 入库时间 2024-02-19 22:40:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-03

    未缴年费专利权终止 IPC(主分类):G01N21/05 授权公告日:20170609 终止日期:20190420 申请日:20120420

    专利权的终止

  • 2017-06-09

    授权

    授权

  • 2014-05-28

    实质审查的生效 IPC(主分类):G01N21/05 申请日:20120420

    实质审查的生效

  • 2014-03-05

    公开

    公开

说明书

技术领域

本公开大体上涉及用于进行光学测量的基于流通池的系统和技术。本公开的具体方面涉及通过下述方式为流体的原位实时光学表征而配置的结构、器件、组件、装置、系统和技术,所述方式是:为进行诸如荧光光谱、吸收光谱和/或浊度测定等光学测量而配置的高度紧凑的多光学接头(multi-optical-junction)的流通池组件、光学感测元件、组件和系统。可以通过诸如自动平台、半自动平台、自主式平台或半自主式平台等各种各样的部署平台(deployment platform)容易地实施根据本公开的各种实施例,这些平台例如自主式水下航行器(AUV)、自主式水面航行器(ASV)或浮标。

背景技术

用于可操作水平的化学感测的现有技术涉及昂贵的实验室仪器或高价的野外仪器,并且提供通常过度延时的有限空间范围的信息。因此,现有系统往往是笨重的、本质上离散的、位置特定的,并且是成本、劳动力、时间密集型的,并且充其量是无效率地或无效地集成在一起,从而使得它们无法有效率地在统一或单一的仪器内提供多类型(诸如荧光光谱测定法、分光光度测定法和浊度)的测量。

流通池通常用于荧光光谱测定法测量和分光光度测定法测量中。用于荧光光谱测定法(荧光)测量的商用流通池通常包括彼此相对垂直安装的激发光学接头(excitation optical junction)和检测光学接头,目的在于使由与到达检测器的荧光波长的重叠而来的不期望的激发波长最小化。相反地,分光光度测定法测量感兴趣的液体样本的吸光度;这样,激发光学接头和检测光学接头关于共同或共有的轴线彼此相对地设置。

多数商用原位荧光计使用用于诱导荧光的单个UV激发源。这种配置在传感器封装和简化方面是有利的。然而,在缺少多激发的情况下,该配置无法实现激发-发射矩阵光谱,还限制了传感器在分离复杂混合物的单个光谱方面的能力。对于基于实验室的传感器,已经使用包括多个波长的单个激发源(例如,氘-钨)和长通滤波器系统或单色仪来进行多激发荧光测量,从而每次选择感兴趣的波长来诱导荧光。这些附加的部件通常体积大、沉重且昂贵,致使仪器不适于原位化学感测。另一限制在于,尽管荧光测量和吸光度测量仅在激发源的取向上不同,但很少将二者形成为单个仪器。

因为存在着对于能够克服一个或多个前述局限的流体感测或表征设备、装置和系统的需求。

发明内容

本公开的实施例的高度紧凑的(例如,典型尺寸为高度或长度为约61mm、宽度为约37mm)多光学接头的光学流通池结构允许以单流通池组件的形式实现用于荧光测量和吸光度测量的多激发光学系统的并存仪器。本公开的一些实施例能够利用多个低成本的LED作为用于构建具有激发-发射矩阵光谱(EEM光谱或EEMS)性能的原位实时LED-诱导荧光(LEDIF)传感器的激发源,所述传感器可由不同类型的平台来承载或部署在不同类型的平台上,所述平台诸如AUV、ASV、便携平台、浮标(固定的或可牵引的)和/或基于节点的结构、组件、装置或系统。本公开的实施例有利于以低制造成本制造原位光学感测系统。

本公开的多个实施例能够提供用于在原位光学平台上进行EEMS程序的光学平台,其中,所述光学平台能够在同一仪器内进行荧光测量和吸光度测量。对于多个实际应用,激发和发射光谱通常很宽并且不必需要非常精细的波长分辨率。这样,本公开的几个实施例包括被设置用来进行激发-发射矩阵光谱的离散波长激发源(例如LED)。以与包括若干光源光信号模块的定制的多激发发射光学系统相结合的方式,本公开的光学流通池可以承载多个(例如,多达12个)用于进行激发-发射矩阵光谱的可选择或可互换的激发光源光信号模块。同一流通池还能够在同一仪器内进行分光光度测定法测量,从而能够实现因吸光度而产生的荧光发射测量的自校正。

本公开的多个实施例可以被设置用于涉及离散波长LED的多激发LED光学(MELO)光谱。几个实施例还被设置用来进行分光光度测定法测量,从而使因吸光度而产生的荧光发射测量的自校正变得容易或能够实现。可将仪器与定制设计的MELO装置或系统结合,所述MELO装置或系统包括:(1)用于容纳不同(即,GaN和ZnO半导体带隙)LED封装的各种光学布局;和(2)用于吸光度测量的多波长激发源。在荧光光谱测定法不是传统方法的情况下,为实现对于化学品的非常低的检测极限,本公开的实施例的流通池的几何图形可容纳多个激发设备、装置或系统(相对于检测光学接头垂直地装备),所述多个激发设备、装置或系统可以被同时激活或启动。于是,激发吞吐量(throughput)倍增,因此荧光发射增加。依据卡沙规则(Kasha′s rule),荧光发射的波长保持不变,并且激发波长将由所采用的最长激发波长来决定。本公开的实施例的光学接头能够容纳与多种类型传感器对应的光学部件,所述多种传感器诸如具有拉曼(Raman)光谱性能的LED诱导波长域荧光传感器(LED-Induced Wavelength-Domain Fluorescence sensor)和激光诱导时间分辨荧光传感器(Laser-Induced Time-Resolved Fluorescence Sensor)中的一者或两者。

本公开的多个实施例包括多个光源光信号模块,各所述光源光信号模块承载若干光信号生成器件,诸如,一组LED和/或一组半导体激光器。例如,一些实施例可以包括一系列超紧凑(大约Φ1/2″,范围从大约1″至2″(L))的光学系统,所述光学系统能够使用于诱导荧光的不同封装构造(诸如,TO-39、InGaN基板上的HS(异质结构)等)的商用低成本LED的吞吐量最优化,并且使聚光透镜与用于采集发射信号的束阵列跳线(bundle array patch)(或单芯)光纤接合。

基于高度紧凑(例如超紧凑)的流通池几何图形和布局来布置本公开的实施例的光学设备、装置、子系统和/或系统以提供用于诱导荧光和发射采集的提高的或优化的激发吞吐量。尽管如此,采用由每个光学系统提供的内置的调整能力,实际上能够在任何类型的流通池几何图形中利用这样的光学系统,以使光学性质适合于考虑中的给定类型的流通池几何图形。

当被接合或装备至包括多个光学接头的光学流通池时,本公开的实施例能够形成原位实时激发-发射矩阵分光荧光计的部分,所述分光荧光计可以部署在多种类型的平台上,其中,在超紧凑封装或超紧凑外形中的最优光学吞吐量具有高优先级(例如,在AUV、ASV、便携平台、浮标(固定的/可替换的/可移动的/可牵引的)、基于节点的或其它类型的平台中)。例如,本公开的实施例的低成本、实时、高度紧凑(例如,200(Φ)×300mm(L))的多平台(例如,AUV、ASV、船边、浮标或给水管网)可部署的光学光谱传感器(optical spectroscopic sensor)可以被设置用来在用于流体(例如水)化学的原位、通用、不挥发(以及几种易挥发的种类)感测的单个自供电仪器内进行:(i)荧光测量;(ii)吸光度测量;以及(iii)浊度测定。本公开的实施例的传感器能够在自然水域和海洋环境下检测、测量或表征几种易挥发化合物,诸如BTEX(苯系物)--苯、甲苯、乙苯以及二甲苯。通过荧光光谱法可检测到的化合物包括:(1)藻类(algae bloom);(2)水过滤厂中的氯化;(3)光化学;(4)天然(腐殖的)示踪剂和人工示踪剂(诸如荧光素和罗丹明);(5)高分子量化合物(诸如油);以及(6)低分子量化合物(诸如苯系物)等。此外或可替换地,可通过基于吸光度的测量来检测各种化合物(由于在存在色散的情况下,吸光度测量强度与吸光度不同,因此,浊度提供了用于校正的方法)。

这种传感器能够进行多激发荧光测量和宽带(例如,185~1100nm)吸光度测量,以提供用于水化学研究和监测的原位的吸光度校正的激发-发射矩阵荧光光谱,所述水化学研究和监测的范围从因意外的/无意识的污染或实验/测试物质的引入和监测而引起的湖泊学和海洋学研究到水供给和分配管网的监测。浊度测定是基于浊度测定法原理,所述浊度测定法原理与细菌密度的颗粒悬浮测量以及浊度(比浊)测量有关。

本公开的各种实施例包括接合至或可接合至流通池的定制入口系统,从而使流通池仅简单地依靠承载所述流通池以及接合至该流通池的光学模块、部件或原件的设备、装置、系统或平台(例如,AUV)的向前运动来有效地或有效率地吸入液体样本,这避免或消除了对于用来吸入液体的泵的需要,此外,降低了耗电或使耗电最小化(例如,在AUV上)。

本公开的实施例的光学光谱化学感测(optical spectroscopic chemicalsensing)装置或系统可以检测、感测或表征例如不挥发化合物、溶解的有机材料、高分子量碳氢化合物、杀虫剂、色素(诸如叶绿素)以及示踪剂,从而解决宽范围的水质问题。这种系统可被设置用于提供三方面测量(多激发荧光、宽带(例如,185~1100nm)吸光度和浊度)性能,这提供了以单个传感器模块获得吸光度校正的荧光光谱和对细菌密度的悬浮物/浊度(比浊)测量的方法。

本公开的实施例的多激发荧光测量设备、装置和系统可被设置用于激发-发射矩阵光谱,且能够生成类似于基于实验室的宽带激发荧光计的测量结果。本公开的实施例能够传递实时的多光谱数据,时滞取决于所选的积分时间。

本公开的几个实施例提供了一体化封装,所述封装包括:(i)多光学接头流通池;(ii)一系列用于光学增强的光学系统;(iii)数据记录系统;(iv)机载配电板和计算机;以及(v)电源(例如电池)。这种一体化封装可对应于具有高度紧凑的圆柱状或其它类型的形状的壳体或外壳。

多平台兼容部署可以包含:(i)自主式水下航行器(AUV);(ii)自主式水面航行器(ASV);(iii)船边;(iv)浮标;(v)基于节点的主机;和/或(vi)其它类型的部署。各种实施例表现出需要最少维护的低成本,因此,非常适合于在浮标和多节点水供给和分配监测网络上长期部署。

由配电板提供低耗电和有效电力管理,所述配电板由有利于原位自主式航行器部署的软件或程序指令开发和执行环境所控制。此外,供给至并穿过流通池的野外样本不需要泵(例如,泵是可选的,或完全排除的/避免的),这进一步增强了诸如机载远程操作或自主式航行器或其它类型的平台的节能,而对所述平台而言耗电是重要的考虑。进而,各种实施例表现出需要最少维护的低成本,因此,非常适合于诸如在浮标和多节点水供给/分配监测网络上的长期部署。

根据本公开的一方面,光学流通池组件包括:壳体,其具有轴向长度、横向长度、周缘以及内部通道,所述内部通道具有沿着所述壳体的轴向长度的一部分、平行于所述流通池组件的光信号检测轴线延伸的长度;至少一个流体入口,其被设置用于与所述内部通道流体连通;至少一个流体出口,其被设置用于与所述内部通道流体连通;多个横向光学接头,它们被设置用来将光信号沿着光信号传播路径引导至所述内部通道中,所述光信号传播路径与所述流通池组件的所述光信号检测轴线是偏移的;以及至少一个轴向光学接头,其被设置用来接收从所述内部通道传播至所述至少一个轴向光学接头的光信号。所述光学流通池组件还可以包括轴向光学接头,该轴向光学接头被设置用来将光信号沿着与所述光学流通池组件的所述光信号检测轴线基本上平行的光信号传播路径引导至所述内部通道中。一组光纤和/或其它光学元件可光耦合至一个或多个轴向光学接头。

所述多个横向光学接头可以被设置用来将光信号沿着与所述流通池组件的所述光信号检测轴线基本垂直的光信号传播路径引导至所述内部通道中。所述多个横向光学接头被设置用来例如以第一组横向光学接头的方式光耦合至多个光源光信号模块,所述第一组横向光学接头相对于所述壳体的轴向长度布置在第一位置处。所述多个横向光学接头还可以包括第二组横向光学接头,所述第二组横向光学接头相对于所述壳体的轴向长度布置在第二位置处,所述第一位置和所述第二位置在空间上彼此偏移。所述多个横向光学接头与一个或多个轴向光学接头中的至少一者包括诸如小型(例如SMA型)光连接器等标准光连接器的第一部分。

所述光学流通池组件还包括多个光源光信号模块,所述多个光源光信号模块内的每个光源光信号模块接合至并承载一组LED和一组半导体激光器中的一者。每个光源光信号模块可承载单个LED和单个半导体激光器之一。在一些实施例中,一个以上的光源光信号模块包括被设置用来输出具有单个光学中心波长的光信号的单个LED,或者包括被设置用来输出具有多个不同的光学中心波长的光信号的单个LED。

本公开的实施例的光学流通池组件可以被设置用来使荧光光谱测量、吸收光谱测量和浊度测定中的至少两者能够实现。在几个实施例中,光学流通池组件可以被设置用来进行EEMS程序或测量。

在各种实施例中,所述光学流通池组件的尺寸和规格是为了部署在如下平台上而设定的,所述平台诸如远程操作航行器(ROV)、自主式水下航行器(AUV)、自主式水面航行器(ASV)、浮标和/或给水管网,并且其中,所述光学流通池组件使得所述平台进行的光谱测量变得容易(例如,否则,所述平台具有非常有限的光谱测量能力或不具有光谱测量能力)。

根据本公开的另一方面,具有光轴的光源光信号模块可以光学耦合至光谱系统的光学流通池,并且包括:光连接器的第一部分,其相对于所述光源光信号模块的光轴对齐,且被设置用来与光连接器的对应的第二部分配合,所述光连接器的第二部分与所述光源光信号模块分离;壳体,其具有轴向长度、外横截面积以及内横截面积;一组光信号源,它们包括被承载于所述壳体内部的LED和半导体激光器之一,所述一组光信号源被设置为沿着所述光源光信号模块的光轴引导光信号;以及一组光路调节元件,它们被承载在所述壳体内部并被布置在所述一组光信号源中的光信号源与所述光连接器的第一部分之间,所述一组光路调节元件包括一组透镜元件和一组间隔元件中的至少一者,所述一组光路调节元件中的每个光路调节元件具有与所述光源光信号模块的光轴垂直的横截面积,所述一组光路调节元件中的每个光路调节元件被设置用来相对于所述光学流通池内的光谱测量位置选择性地调整与所述一组光信号源对应的光程长度。

所述光源光信号模块的壳体可以具有内直径,所述内直径被设置为以最小的空间容纳LED或半导体激光器封装体。例如,壳体的内直径小于与LED或半导体激光器对应的封装体的横截面积的约2或3倍。

根据本公开的再一方面,一种光谱系统包括具有轴向长度的流通池组件,所述流通池组件具有:流体入口结构,其被设置用来接收流体;流体出口结构,其被设置用来输出流体;所述流通池内部的通道,具有纵向长度的所述通道被设置用来提供沿着所述流体入口结构和所述流体出口结构之间的流体连通通路的光谱测量区域;一组横向光学接头,它们被设置用来与所述通道的纵向长度基本垂直地将光信号引导至所述通道中;以及轴向光学接头,其被设置用来接收在基本平行于所述通道的纵向长度的方向上远离所述光谱测量区域传播的光信号。所述光谱系统还包括:一组光源光信号模块,它们通过一组小型光连接器物理地且光学地耦合至所述流通池组件;发射采集组件,其包括光耦合至所述流通池组件的一组光纤;以及小型分光光度计,其光耦合至所述发射采集组件。所述光谱系统的每个元件可由壳体承载或位于所述壳体内,使得所述光谱系统是这样的基本或完全自包含式系统:该系统能够被原位部署以用于通过光谱测量实时表征流体。例如,所述光谱系统可以被设置用于进行荧光光谱测量、吸收光谱测量和浊度测定中的至少两者。在各种实施例中,所述光谱系统被设置用于进行EEMS程序或测量。

光谱系统可以被设置用于通过如下方式进行原位实时光谱测量,所述方式是:将由所述一组光源光信号模块提供的光信号引导至所述光学流通池组件的光谱测量区域中(例如,连续的或同时的);捕获向所述轴向光学接头传播的光信号;并且将捕获的光信号提供给所述分光光度计。

所述光谱系统还包括接合至所述光学流通池组件的流动输送歧管,所述流动输送歧管被设置用于从流体环境原位地实时地捕获流体样本并且使捕获的流体样本返回至所述流体环境。这种流动歧管有助于或能够实现不包括被设置用来将流体输送至所述光学流通池组件中的泵。所述光谱系统的各种实施例可以在多个平台上部署为基本自包含式单元,所述多个平台被设置为至少部分暴露于流体环境,其中,典型的平台类型包括ROV、AUV、ASV、浮标以及给水管网。

此外,所述光谱系统包括:指令处理设备,其被设置用来执行程序指令集;存储器,所述存储器接合至所述指令处理设备;以及软件用户界面,所述软件用户界面被设置用来将程序脚本生成为文本文件,所述文本文件指定根据脚本语言写入的一组指令。

根据本公开的另一方面,一种用于通过被设置用来原位实时光谱测量的基本自包含式光谱系统来进行光谱测量的处理包括:在流体环境内原位部署所述基本自容式光谱系统的至少一部分;在所述光谱系统的光学流通池组件的内部通道内接收流体样本;并且通过如下方式进行激发-发射矩阵光谱测量,所述方式为:对所述光谱系统承载的一组LED和一组半导体激光器中的一者供电以生成多个光激发信号,所述多个光激发信号中的每个光激发信号具有不同的光学中心波长;将所述多个光激发信号引导至所述流通池组件的所述内部通道中(例如,连续的或同时的);检测与被引导至所述流通池的所述内部通道中的所述多个光激发信号相对应的一组光发射信号;并且进行一组荧光光谱测量。

附图说明

图1A是本公开的典型实施例的多光学接头的光学流通池组件的立体图。

图1B是图1A的多光学接头的流通池组件的第一俯视横截面示意图。

图1C是图1A的多光学接头的流通池组件的第二俯视横截面示意图。

图1D是图1A的多光学接头的流通池组件的第三俯视横截面示意图。

图1E是诸如图1A的多光学接头的流通池组件的根据本公开的实施例的多光学接头的流通池的实施例的第一正视示意图。

图1F是诸如图1A的多光学接头的流通池组件的根据本公开的实施例的多光学接头的流通池的实施例的第二正视示意图。

图2是本公开的典型实施例的横向光学接头的侧面示意图。

图3A和图3B是本公开的实施例的用于第一类型光信号源的分别对应于标准的光程长度和延长的光程长度的光源光信号模块的典型实施方式的示意图。

图3C和图3D是本公开的实施例的用于第二类型光信号源的为了分别提供宽半视角和窄半视角而设置的光源光信号模块的典型实施方式的示意图。

图3E和图3F分别是本公开的实施例的对应于第三类型光信号源的保持器和光路校正器的典型实施方式的示意图。

图4A是本公开的实施例的用于形成光学发射采集装置、子系统或系统的一部分的一组光纤组束的示意图。

图4B是本公开的实施例的相对于流通池轴向光学接头的一部分布置的一组光纤组束的示意图。

图4C图示了本公开的实施例的光纤组束组件。

图4D是本公开的实施例的典型分光光度计入射狭缝结构的示意图。

图5A和图5B图示了本公开的实施例的为了承载(例如,以一体的或内部的方式)LEDIF系统而能够设置的各种典型类型的平台。

图6A是本公开的实施例的LEDIF传感器布局的示意图。

图6B是本公开的实施例的具体LEDIF元件和对应的LEDIF操作或处理的框图。

图7示出了本公开的典型实施例的贯穿壳体的流动输送歧管的液体腔,图中的尺寸是以毫米为单位标注的。

图8A图示了本公开的实施例的关于主平台的感测位置和时间提取。

图8B和图8C示出了本公开的实施例的模型化内部流场(例如,对应于等流速线)和相关的网格密度验证。

图9是本公开的实施例的LEDIF配电板的电路图。

图10示出了本公开的典型实施例的iLEDLIF源代码处理。

图11示出了本公开的实施例的用户生成的程序的典型示例。

图12A示出了本公开的实施例的LEDIF传感器的实验室混合物的荧光峰与诸如Perkin Elmer LS55等典型的高端的基于实验室的荧光计的实验室混合物的荧光峰的比较。

图12B示出了使用本公开的实施例的LEDIF传感器从文莱的泥炭地获得的野外样本的典型发射光谱。

图13示出了用于测试本公开的实施例的LEDIF传感器的关于检测和识别多个化合物的性能的复杂混合物的典型发射光谱和激发-发射矩阵(EEM)光谱。

图14示出了本公开的实施例的LEDIF传感器的对于罗丹明B(Rhodamine B)的典型的吸收光谱、比尔-朗伯相关性(Beer-LambertCorrelation)和传输测量。

图15示出了用于由本公开的实施例的LEDIF传感器进行的浊度测定的典型线性校准曲线。

具体实施方式

在本公开中,给定元件的描述、或者在与描述性材料相对应的特定的图或对该图的参照中的特定元件编号的考虑或使用可以包含与在另一图或与其相关的描述性材料中所确认的元件或元件数相同的、相当的或相似的元件或元件编号。除非另有特别的说明,否则在本文的说明中使用的“/”意味着“和/或”。此外,除非另有明确的规定,否则在本文的说明中,具体数值或数值范围的记载被认为是对具体近似数值或近似数值范围的记载。

如文中所使用的,根据已知的数学定义(例如,以与An Introductionto Mathematical Reasoning:Numbers,Sets,and Functions,“Chapter11:Properties of Finite Sets“(例如,如140页所示),by Peter J.Eccles,Cambridge University Press(1998)中说明的数学定义对应的方式),术语“组(set)”对应于或被定义为在数学上呈现至少1基数的非空的、有限的元件组织(即,本文中定义的组可以对应于单片或单元件组或多元件组)。一般来说,元件组根据考虑中的组的类型可以包括或者可以是系统、装置、器件、结构、结构特征、对象、处理、物理参数或值。

如文中进一步详述的,本公开的实施例涉及为了通过如下方式光学地感测、检测、测量、监测、表征、评价和/或分析(为了简单起见且为了帮助理解,以下称作“表征”)流体的一个以上的特性(例如,组成或化学组分特性)而配置的构造、设备、组件、装置、系统和技术,所述方式为:(1)高度紧凑的多光学接头的流通池组件;和/或(2)为了进行诸如荧光光谱、吸收光谱、浊度和/或其它类型的测量中的一个以上(例如至少两个)等特定类型的光学测量而能够被选择性地配置的光信号供给和光学感测元件、组件、单元、模块、装置、子系统和系统。根据实施例细节,给定的光信号供给模块可以包括被配置用来提供如下光信号的光信号源,所述光信号具有:(a)特定中心波长;(b)多个中心波长(例如,在可选择的基础上,诸如以多波长LED的方式);或者宽频或宽带光波长。

在本公开的上下文中,术语“流体”包含液体以及气体介质。因此,本公开的具体实施例可以被设置用来促进或进行对液体的光学测量,并且本公开的特定实施例可以被设置用来促进或进行对气体和/或气体与液体的混合物(例如,在大气环境下的液滴和/或悬浮颗粒)的光学测量。

本公开的实施例在原位基础上有助于或能够实现流体的实时光学表征。各种实施例促进或能够实现存在于与水体(例如,大洋、海、湖、池塘、沼泽、江河、河口或其它水体)或导水结构(例如运河)相对应的源头的、典型的、标准的或自然的环境内的流体的实时光学表征。流体样本或样品可以(a)流入前述流通池组件(例如,在渐近或连续的基础上)以促进流体样本光学表征;并且(b)流出流通池组件以返回流体样本或样品所来源的环境。

此外,本公开的各种实施例涉及诸如光谱系统等高度空间有效(例如超紧凑)且节能的原位实时光学测量装置和系统,该装置和系统易于在能够接近于流体环境或至少部分地在流体环境内布置的各种固定的、可替换的、可运输的、可运动的或移动的平台上装载或部署。在很多实施例中,这样的平台可包括自动平台、半自动平台、自主式平台或半自主式平台,诸如,水上远程遥控航行器(ROV)、自主式水下航行器(AUV)、自主式水面航行器(ASV)或浮标。用于承载本公开的实施例的光谱测量装置或系统的任何给定的平台成为被配置用于对平台部署环境内的流体进行原位实时光谱测量。

典型的多光学接头的光学流通池组件的各个方面

图1A是本公开的典型实施例的多光学接头的的光学流通池组件10(为了简单起见且为了帮助理解,以下称作“流通池”)的立体图。在实施例中,流通池10包括壳体20,壳体20具有:(a)高度或者轴向的/纵向的/垂直的长度;(b)横截面的或横向的剖面、面积或长度;以及(c)用于界定一组外部或外部表面的周缘。如下进一步详述地,壳体20包括具有沿着或平行于壳体的高度部分延伸的长度或纵向长度的内部或内部通道、通路或者腔。壳体20包括一种以上类型的抗降解(例如,对应于化学、热或腐蚀降解)材料或者由一种以上类型的抗降解材料制造,所述降解在考虑中的某种流体环境中可能会发生或被预料到。例如,壳体可以包括不锈钢或耐化学和/或热的聚合物,或者由不锈钢或耐化学和/或热的聚合物制造,所述耐化学和/或热的聚合物例如聚醚醚铜(PEEK)或者其它类型的聚合物材料。

流通池10包括至少一个流体输入或入口接合件、组件、固定件80以及至少一个流体输出或出口接合件、组件或固定件90。任何给定的流体入口组件80和任何给定的流体出口组件90被配置用于与流通池的内部通道流体连通(例如,通过壳体20中的相应的端口或开口),以使得壳体10外部的流体环境内的流体能流入流体入口组件80、流入且流过流通池的内部通道、并且流出流体出口组件90而返回至所述流体环境。流体入口组件80和/或流体出口组件90包括一种以上类型的配件或连接器元件,诸如,标准Swagelok(例如,Male SAE/MS)连接器。

在各种实施例中,壳体20可以是单个的、单体的或基本上单体的材料。在一些实施例中,壳体20可以包括多个可连接的、可接合的(例如,可匹配地接合的)或者可连接的部分、部件、段或构件,诸如,可拧接在一起的上部和下部(例如,这有助于流体入口组件80相对于流体出口组件90的选择性定位)。

在诸如以下进一步说明的实施例等各种实施例中,为了简单起见且为了帮助理解,流通池10包括由壳体20支承的或者接合至壳体20的单个流体入口组件80和单个流体出口组件90。在特定实施例中,流通池20可以包括多个流体入口组件80和/或多个流体出口组件90。依据实施例的细节,流体入口组件80和/或流体出口组件90能够提供不阻塞的、不间断的或连续开放的流体连通通路;或者,能够选择性地或可切换地提供相对于流通池的内部通道的可进入的、可阻塞的、可关闭的或可密封的流体连通通路。选择性地提供可进入的、可阻塞的、可关闭的或可密封的流体连通通路的实施例可以以本领域技术人员理解的方式包括或被联接至一组致动阀,诸如电磁阀组件(例如,根据流通池尺寸可以是小尺度或微尺寸的电磁阀)。

此外,流通池10包括如下详细说明的多个光学接头结构或元件,它们被配置用来使光信号能够从如下(a)以及可能能够从如下(b)传输至流通池的内部通道中:(a)一个以上的光信号供给或光源光信号元件、结构、器件、单元、模块或组件100a-100e(例如,荧光光谱光信号源),它们被配置用来在从内部通道的长度偏移的、非平行于内部通道的长度的或至少基本上垂直于内部通道的长度的方向上将光信号引导至流通池的内部通道中;(b)附加的光源光信号元件、结构、器件、单元、模块或组件100g(例如,吸收光谱光信号源),其被配置用来在与内部通道对齐的、沿着内部通道的或至少基本平行于内部通道的方向上将光信号引导至流通池的内部通道中。附加光源光信号模块100g能够包括或对应于可选择性地固定或安装于流通池10的端盖结构。

流通池10还包括被配置用来有助于或能够使光信号从流通池的内部通道传输至光信号接收、采集、感测或检测元件、器件、装置、组件或系统200的一组光学接头结构或元件,例如,光信号接收、采集、感测或检测元件、器件、装置、组件或系统200包括一组光纤,这组光纤被配置用于光学耦合至LED和/或诸如光谱仪(诸如Ocean Optics微型光谱仪(Ocean Optics,Inc.,Dunedin,FLUSA,www.oceanoptics.com))等激光诱导荧光传感器。

图1B是图1A的流通池10的第一俯视横截面示意图;图1C是图1A的流通池10的第二俯视横截面示意图;图1D是图1A的流通池10的第三俯视横截面示意图,图1D以毫米(mm)为单位示出了流通池10的具体典型尺寸;图1E是诸如图1A所示的流通池10的实施例的第一正视示意图;且图1F是诸如图1A所示的流通池10的实施例的第二正视示意图,图1F以毫米为单位示出了具体的典型流通池尺寸。

在各种实施例中,流通池10包括多个(例如6个)相对于壳体20的周缘布置的(例如,以圆周或大致圆周的方式围绕壳体20布置的)横向光学接头40,其中,每个横向光学接头40被设置用来提供与壳体的内部通道22的纵向长度基本垂直的光信号传播路径和/或光轴。对应于图1A~图1F的流通池10能够相应地容纳多个(例如6个)光源光信号模块100(例如,被设置用来提供、生成或输出与多个不同的中心波长相对应的光信号),每个光源光信号模块100可接合至相应的横向光学接头40,使得每个光源光信号模块100可以被布置在相对于壳体的周缘和/或高度的给定(例如预定)部位或位置。在典型实施方式中,可以将6个光源光信号模块100设置用来提供、生成或输出由260nm、285nm、315nm、341nm、375nm和405nm的光波长(例如中心波长)来表征的光信号。其它实施方式可包括被设置用来提供、生成或输出由一个以上的其它光波长(例如中心波长)来表征的光信号的附加的或其它光源光信号模块100。

一些实施例包括相对于沿着壳体20的高度的给定的垂直位置限定的单层横向光学接头40,而其它实施例包括相对于沿着壳体的高度的多个垂直位置或偏移限定的多层横向光学接头40。即,横向光学接头40的每个不同的层对应于沿着壳体的高度的特定的垂直位置、距离或者偏移。例如,多个横向光学接头40可包括(a)第一组横向光学接头40a-f,它们布置在相对于壳体20的高度的第一垂直位置;并且可能包括(b)第二组横向光学接头40g-1,它们布置在相对于壳体20的高度的第二垂直位置,以使得第一组横向光学接头40a-f对应于横向光学接头40的第一层,第二组横向光学接头40g-1对应于横向光学接头40的第二层。横向光学接头40的第一层与第二层沿着壳体的高度相互垂直偏移。因此,与第一组横向光学接头40a-f(与横向光学接头40的第一层相关)相对应的光信号传播路径或光轴可被定位为至少基本平行于穿过壳体20的第一横向平面;与第二组横向光学接头40g-1(与第二层横向光学接头40相关)相对应的光信号传播路径或光轴可被定位为至少基本平行于穿过壳体20的第二横向平面。

鉴于前述情况,诸如图1A~图1F所示的实施例的流通池实施例在横向光学接头40的单层构造中能够容纳多达6个光源光信号模块100a-f;且在横向光学接头的双层构造中能够容纳多达12个光源光信号模块100a-1。其它实施例可以包括横向光学接头40的附加的层。为了简单起见且为了帮助理解,以下说明的一部分描述的是这样的实施例:其包括多达6个横向光学接头40a-f和至少一个横向光学接头层。本领域普通技术人员易于理解的是,其它实施例可以包括其它数量的横向光学接头40,其中,这些实施例的各个横向光学接头层可以包括相同或不同数量的横向光学接头40。

下面,参照图2,示出了本公开的典型实施例的横向光学接头40的侧面示意图。在一些实施例中,每个横向光学接头40包括对于考虑中的光波长或波长范围至少基本上能透射过的光学窗口(例如UV透射窗口),且所述光学窗口耐化学、热和/或腐蚀性降解。光学窗口可以包括或者可以是例如熔融石英窗口。每个横向光学接头40还包括至少一个密封元件(诸如氟橡胶或特氟龙O型环等),以有助于对于内部通道22的防泄漏或防漏密封。每个横向光学接头40还包括诸如超小型版本A(SMA)型光连接器等光耦合器或连接器组件的部分(例如,母头部分),所述部分有助于或能够使横向光学接头40接合至光信号模块100。

此外,流通池10的各种实施例包括位于横向光学接头40a-f与通道22的中央区域或部分之间的透镜组件或透镜30,透镜组件或透镜30内部露出于壳体的内部通道22或者布置在壳体的内部通道22内。透镜30被配置用来使得由光源光信号模块100a-f提供的光信号或光束易于或能够聚焦到通道22内的光谱测量区域,诸如,通道22内的中心或最中心位置、地方或点(例如,在通道22的大约横向中点处的多光束光信号会聚位置)。在多个实施例中,透镜30可以包括或者可以是平凸透镜(例如,焦距为10mm的6mm平凸透镜),所述平凸透镜被支承于或安装于透镜架(例如,13mm透镜架,该透镜架可以包括一组保持或紧固元件,诸如一对M1.6螺钉)上。在一些实施例中,透镜30是可移动或可置换的,使得透镜30能够容易地与一组光信号检测元件300(例如一组光纤)的光学性质匹配。以与上述用于壳体20的方式相似的方式,透镜30和对应的透镜架可以包括耐化学、热和/或腐蚀性降解的材料或者可以由耐化学、热和/或腐蚀性降解的材料制成。

如图1A~图1F所示,此外,流通池10包括至少一个轴向或纵向的光学接头,然而在多个实施例中,流通池10包括多个(例如2个)轴向或纵向的光学接头50a和50b。轴向光学接头50a和50b均被设置用来提供与壳体的内部通道22的长度基本平行的光信号传播路径和/或光轴。轴向光学接头50a和50b可以通过本领域技术人员易于理解的方式均具有与横向光学接头40a-f的结构相同的、本质上相同的、相似的或类似的结构。本领域技术人员还应当理解,在某些实施例中,在给定的横向光学接头50a、50b与对应于流通池的内腔22的中心轴或纵轴之间可以通过与上述方式相似或类似的方式布置有额外的透镜。

在一些实施例中,第一轴向光学接头50a能够使光信号从附加的光源光信号模块100g沿着通道22的在中央通道区域内的纵向或轴向部分的输送变得容易或能够实现。第一轴向光学接头50a可以包括或被接合至一种或多种的光联轴器、配件、连接器或信号传输元件。第二轴向光学接头50b能够使从通道的中央区域行进至第二轴向光学接头50b的光信号的检测或接收,以及这种的被检测或被接收的光信号到光信号检测器、传感器或表征设备(例如光谱仪)的传输变得容易或能够实现。对应于第二轴向光学接头50b的光轴可以被定义为流通池10的光信号或发射接收、检测或采集轴。

在其它实施例中,第一轴向光学接头50a和第二轴向光学接头50b的各者使从通道的中央区域传送至它们的光信号的检测或接收变得容易或能够实现。在这样的实施例中,可通过分叉的光纤组束的方式来使与第一轴向光学接头50a和第二轴向光学接头50b对应的光信号的检测变得容易或能够实现,其中,读取管脚(read leg)的第一端光耦合至第一轴向光学接头50a,且读取管脚的第二端光耦合至第二轴向光学接头50b。例如,光纤组束可光耦合至单个光检测器。

典型光源光信号模块的各个方面

本公开的各种实施例的光源光信号模块100可以被设置用来提供、生成、输出和/或传送适合于荧光光谱、吸收光谱和/或浊度测定的光信号。根据实施例的细节,光源光信号模块100可带有或被光耦合至窄带光信号源,诸如,一组单色/单中心波长或多色/多中心波长的LED(例如,单个LED或多个LED)或者一组激光器件(例如,单个半导体激光器或多个半导体激光器);或者多波长或宽带光信号源(例如,诸如HeraeusNoblelight UV-VIS-DTM6/10S、185-1100纳米光源等光学增强的宽带波长源)。承载有或被接合至一组LED和/或一组激光器的光源光信号模块100非常适合于促进荧光光谱测量(例如,对应于LED诱导荧光(LEDIF)测量)。承载或被接合至多波长或宽带光信号源的光源光信号模块100非常适合于促进吸收光谱测量。

在多个实施例中,如下进一步说明的,具体的光源光信号模块100能以一种以上的方式选择性地或灵活地在进行光学调整或调节。本公开的实施例的光学流通池10能利用本公开的实施例的光源光信号模块100,或者能够在其它的或不同的类型的流通池设计和/或其它的或不同的类型的光学测量系统中利用本公开的实施例的光源光信号模块100。

在实施例中,光信号模块100包括诸如LED和/或半导体激光器等一个以上的光信号产生元件,这些光信号发生元件被包含于具有长度以及横截面面积或直径的壳体、外壳或管(例如至少一个透镜管)内部。在一些实施例中,所述管的内部直径或内直径与由此所承载的LED或激光器件的横截面面积或直径(例如外直径)处于一个数量级。例如,所述管的内直径可小于LED封装或半导体激光器封装的外直径的5倍、小于所述外直径的3倍、介于所述外直径的1.25倍~5倍之间或介于所述外直径的2倍~3倍之间。

光信号模块100还可以包括一些光程长度调节元件,所述光程长度调节元件可以包括例如:(a)透镜元件和对应的透镜元件承载架(carrier)、保持架(retainer)或保持器(holder);(b)可以沿着管的长度布置在所述管内部的一个以上的位置处的多个间隔元件;和/或其它类型的元件。可以通过使精确和稳固的光学准直变得容易或能够实现的、以及降低了对于原位传感器可能遇到的干扰的敏感性或将该敏感性最小化的方式严格地装备(例如在一组透镜管中)光信号模块100的元件。以下提供了特定类型的光源光信号模块100的典型实施方式。

图3A至图3F是本公开的实施例的具体类型的光源光信号模块100的典型实施方式的示意图。图3D至图3G所示的典型实施方式表示与Thorlabs光学系统目录(Thorlabs,Newton,NJUSA;www.thorlabs.com,www.thorlabs.hk)相对应的特定部件编号。

图3A和图3B是本公开的实施例的用于第一类型光信号源(例如,TO-39LED封装)的分别对应于标准的光程长度和延长的光程长度的光源光信号模块的典型实施方式的示意图。以下提供了对应于图3A和图3B的具体实施方式的细节。

对于具有波长范围为260~341nm的深UV LED,将带隙半导体包在具有UV玻璃窗口的TO-39封装中。来自Thorlabs的商用UV LED具有120度的HVA(halfviewin gangle,半视角)。对于该封装,安装在13mm(直径)的透镜保持器上的焦距均为10mm的、直径为5mm(或6mm)的两个平凸(复合)透镜被用来采集来自半导体带隙的LED光,然后将这些光重新聚焦至流通池的中央,其中,荧光发射可由垂直于LED激发的光路装备的检测器光纤所采集。所述两个透镜被可调节的保持环(retaining ring)分离,其中,可以调整所述两个透镜之间的距离,从而能够确定复合透镜的焦距。因此,能够利用同样的设计以容纳附加的或其它的流通池几何图形。类似于远离半导体带隙强度就快速下降的圆形散射光源,所生成的光束呈现出广角。这样,可使得UV玻璃窗口非常接近于第一透镜元件或与第一透镜元件接触,以使对来自该光源的LED光的采集最佳化。对于本公开的实施例的流通池几何图形,已经研发出两种光学布局,即标准的光程长度几何图形和延长的光程长度几何图形。

标准的光程长度几何图形-用于将诸如Thorlabs LED260W、LED315W、LED341W等LED光耦合至诸如上述的流通池布置10,半导体带隙应当被聚焦于距第二透镜元件约22.15mm处,这可通过以下(i)、(ii)和(iii)来实现,其中:(i)将复合透镜系统置于LED前面3mm处;(ii)将复合透镜的两个单片分离1.7mm(例如,使用单个保持环);以及(iii)将第二单片与SMA连接器(长度为10mm)的适配器板分离1.7mm(单个保持环)。

延长的光程长度几何图形-用于将诸如LED285W等LED光耦合至诸如上述的流通池布置10,半导体带隙应当被聚焦在距第二透镜元件约29.85mm处,这可通过以下(i)、(ii)和(iii)来实现,其中:(i)将复合透镜系统置于LED前面3mm处;(ii)避免两个单片之间的分离;以及(iii)将第二单片与SMA(SMA长度为16mm)连接器的适配器板分离3.4mm(使用两个保持环)

这种光学布置将LED的带隙半导体(激发源)“实际上”移位至荧光发射将要被采集的位置处,因此,提供了用于诱导荧光的最优吞吐量,而又同时满足了由流通池10的2mm熔融石英窗口所带来的光学裁切限制。这可以通过将能够在有激发光的情况下发出荧光的一张纸放置在流通池流体通道或腔22的几何中心(其中,所有6束激发光相交)处来定性地可视化。可观察到LED的带隙半导体的虚像聚焦在(或非常接近于)流通池的内部通道22的中心处。

图3C和图3D分别是本公开的实施例的用于第二类型光信号源(例如InGaN型LED)的被设置用来提供宽半视角和窄半视角的光源光信号模块的典型实施方式的示意图。下文中提供了对应于图3C和图3D的具体实施方式的细节。

用于InGaN型LED的可调节吞吐量优化器:近UV至可见光的LED包括在InGaN基板上生长的异质结构。对于不同的HVA LED,将二极管封装在直径为5mm的干净的圆形环氧树脂外壳中。对于这种封装,使用均具有20mm焦距、直径为12.7mm的两个平凸透镜采集来自半导体带隙的LED光,然后将该LED光重新聚焦到流通池10的中心,其中,荧光发射将被垂直于LED激发的光路装备的检测器光纤采集。InGaN型LED具有位于LED前的环氧树脂半球,该环氧树脂半球用作球透镜以将光聚焦到某种程度;因此,当与深UV LED(诸如在TO-39封装中的ZnO/A1GaN/GaN/InN型LED)比较时,光束具有(非常)窄的角度。关于流通池几何图形,已经开发了两种光学布局,即宽半视角布局和窄半视角布局。

宽半视角布局-用于将诸如Thorlabs LED370E(HVA为19度)等LED与诸如上述的流通池布置10接合,半导体带隙应当被聚焦在距第二透镜元件约26.45mm处,这可通过以下(i)、(ii)和(iii)来实现,其中:(i)将复合透镜系统置于距LED的基体8.5mm(相当于5个ThorlabsSM05RR保持环)处;(ii)将两个单片分离6mm(通过在两个单片之间放置5个Thorlabs SM05RR保持环易于实现);以及(iii)避免第二单片和SMA(长度为16mm)连接器适配器板之间的分离。这种光学布局将LED的带隙半导体(激发源)“实际上”移位到荧光发射将被采集的位置处,并且同时满足了由流通池10的2mm熔融石英窗口带来的光学裁切限制。这可通过将在存在激发光的情况下能够发出荧光的一张纸放置在流通池内部通道或腔22的几何中心(其中,6个激发光路相交)处而被定性地可视化。可观察到LED的带隙半导体的虚像聚焦在(或非常接近于)流通池10的中心。

窄半视角布局-用于将诸如Thorlabs LED405E(HVA为5度)等LED与诸如前述的流通池布置10接合,半导体带隙应当被聚焦在距第二透镜元件约26.45mm处,这可通过以下(i)、(ii)和(iii)来实现,其中:(i)将复合透镜系统置于距LED的基体~22.8mm处;(ii)避免两个单片之间的分离,从而创造~10mm的定制的等效BFL,其对于直径为12.7mm的单片是非市售的;以及(iii)避免第二单片与SMA(长度为16mm)连接器适配器板之间的分离。

图3E和图3F分别是本公开的实施例的对应于第三类型光信号源(例如,InGaN型三波长LED)的保持器和光路校正器的典型实施方式的示意图。对应于图3E和图3F的具体实施方式的细节如后述所设置。

用于InGaN型三波长LED的光路校正器:三波长LED包括在InGaN基板上生长的异质结构。二极管被封装在直径为5mm的干净的圆形环氧树脂外壳中。对于这种封装,设计了定制的保持器以将LED保持于适当位置,其中,使LED的尖端与连接器适配器板的SMA(长度为10mm)接触。将光路校正器附着在定制的保持器的SMA之前。光路校正器可以包括漫射器(即220GRIT)和两个焦距均为10mm、直径为5mm(或6mm)的平凸透镜,以采集LED光,然后将采集的LED光重新聚焦到与LED的几何中心线同轴的同一光路。定制电路配电板可用于选择或控制各单独光波长的吞吐量。

关于吸收测量,除了包括光程长度调整或确定元件(例如间隔元件)之外或者作为包括光程长度调整或确定元件(例如间隔元件)的替代方案,用于吸光度测量的多波长激发系统的强度可随着电位计而变化,从而以能够有效服务于同一目的的方式来有效地改变激发强度。

典型的光学发射采集装置或系统的各个方面

图4A至图4D是本公开的实施例的光学发射采集装置、子系统或系统200的部分的示意图。更具体地,图4A是一组光纤组束的示意图;图4B是相对于流通池轴向光学接头的部分布置的该组光纤组束的示意图;图4C是本公开的实施例的光纤组束组件的图;图4D是本公开的实施例的典型的分光光度计入射狭缝结构的示意图。下文提供了与这种光学发射采集系统200的典型实施方式相对应的具体细节。

将焦距为10mm的直径为6mm的平凸透镜(凸面为润湿表面)置于圆形束至线性阵列跳线光纤(circular bundle to linear array patch fiber)前~2mm,该光纤包括7×115um的光纤芯。圆形束端被连接至流通池10的SMA光学接头(即,轴向光学接头50b),其中,具有O型环类型的密封件(诸如氟橡胶或特氟龙)的UV透射的且抗降解的窗口(诸如熔融石英)将透镜和圆形束端分离。线性阵列端被连接至设置有200um(宽)×1000um(长)的入射狭缝的光谱仪的SMA。该跳线光纤的圆形束端和线性阵列端可以是带有键的(例如,带有凹槽的)以确保跳线光纤与相关SMA的每个重新连接的同轴度。

每个N.A.0.22的单个光纤芯观察相当于在平凸透镜(直径为6mm)的表面上投影直径为~1.33mm的光锥,并且中心光纤与周围的任一光纤在透镜的表面处的投影直径的重叠为91%(表面积为~82.7%),从而使得每单位可观察面积的强度(intensity)极大改进。在与流通池的内部通道22的中心(发射采集的光路)对应的发射采集最高的情况下,这种改进对于流通池几何图形特别有效。与内部透镜的表面相对应的圆形束端的总观察表面区域的投影直径为1.56mm(如果不将光纤作为点光源,则为1.67mm),从而满足了由流通池几何图形的2mm熔融石英窗口造成的光学裁切限制,并且同时避免了由6mm的内部透镜引起的任何光学像差。流通池10的内部透镜在与内部透镜的焦距(f/10mm)相对应的距离处采集发射。诸如通过改变透镜的尺寸和焦距,可将同样的设计和效用扩展到其它流通池几何图形。

线性阵列端构造的长度对应于与传感器一同使用的光谱仪的入射狭缝高度(或长度),从而沿纵轴传送最优吞吐量。可以如此选择光纤芯直径以使得堆叠线性阵列的高度(1050um)紧密地匹配光谱仪的入射狭缝的高度(1000um)。此外,各单个光纤芯被设置用来在(或非常接近于)每单位可观察面积的强度最高的流通池中心处采集发射。由于光纤芯小于狭缝宽度,因此,还有效避免了由于跳接(patching)的未对准而引起的任何直径边缘光损耗。

应注意的是,可选择诸如文中所述的圆形束至线性阵列光纤的规格以对应于流通池几何图形以及在LED诱导荧光传感器中采用的特定光谱仪。对于没有入射狭缝的光谱仪,发射采集的分辨率和吞吐量由将光传输至光谱仪中的(线性阵列)光纤来决定。如果相较于分辨率更看重吞吐量采集(由于宽的发射光谱分布,这在荧光光谱测定法中是普遍接受的),则可将单个光纤的芯增加到200um。或者,可使用1000um的单芯光纤来替代跳线光纤。来自诸如Ocean Optics等供应商的光纤可以是定制跳接的。

典型部署平台的各个方面

以下,说明本公开的实施例的典型的LEDIF传感器模块、组件或系统(以下称作LEDIF传感器、LEDIF系统,或者为了简单起见且为了帮助理解,简称为LEDIF)。LEDIF传感器是用于水化学的原位感测的低成本实时的可多平台部署的模块,该模块采用了光学光谱感测技术。LEDIF传感器包括至少一个诸如上述的多光学接头的流通池10,多光学接头的流通池10可以配备或装备有若干光源光信号模块100以及光信号接收/检测或发射采集装置、子系统或系统200。光源光信号模块100可以包括低成本的单芯片或多芯片定制封装的不同波长的发光二极管(LED),这些发光二极管由如前所述的一系列定制设计的小型可调节光学元件、构造或设备来进行光学增强,以形成为荧光光谱测定法而构造的最优的激发-发射采集系统。

可以将与定制光纤-光学系统耦合的光学增强宽带波长(诸如,贺利氏特种光源UV-VIS-DTM6/10S,185-1100nm)光源直接装备为与发射采集系统200相对(例如,轴向或纵向相对),从而能够实现在同一仪器内的吸光度测量。利用以多波长LED光学系统感测的浊度测定法原理在同一流通池10内测量浊度。通过光谱仪(诸如,Ocean Optics USB4000或STS光谱仪)观察全部三种测量模态(荧光、吸光度和浊度),并通过指令处理设备处理和/或记录数据,所述指令处理设备诸如微处理器、微控制器或者例如单板计算机(例如技术系统TS-7260)等计算机。所述计算机可以通过一个以上的通信接口(例如,USB接口、SSH接口、以太网接口、诸如移动电话或寻呼网络接口等无线通信接口和/或其它类型的接口)与远程或外部计算系统或设备和/或通信网络通信。可以用48V(110Wh)电池对所述系统供电,所述电池通过配电板进行DC-DC变换以对各种机载设备、装置、子系统或装备配电。可选择电池规格以在紧急情况或达到电力耗尽阈值的情况下能够使电力向主部署平台(例如AUV)转送。在任何适用的情况下,均可采用与配电板的具体要求匹配的其它电池设计。定制或自定义的软件代码或程序指令集(例如,可由处理单元执行的)和相关的计算机可读/电可读介质(例如,可以对应于固定和/或可移动数据存储介质的一个以上的存储器)被设置用来控制机载仪器并进行数据采集/分析操作。

性能和功能:LEDIF能够在单个仪器内记录原位实时的荧光测量、吸光度测量和浊度测定。多光谱性能快速地提供包含水化学信息的多个光谱,其中,数据采集速率仅取决于积分时间。多波长激发性能使得被记录的发射光谱能够被转化为激发-发射矩阵光谱,类似于通过基于宽带激发实验室的荧光计所获得的结果。低功耗(对应于将发光二极管用作激发源和不使用泵的独特的流动输送歧管)、低成本、有利的检测限制、超紧凑的封装、很少需要维护或不需要维护,这些使得根据本公开的几个实施例的传感器或感测系统适于湖泊学与海洋学研究,实质上将实验室带到水中并且克服了现有技术的很多缺点。图5A和图5B图示了被配置用来承载(例如,以一体的或内置的方式)本公开实施例的LEDIF系统的各种典型类型的平台。图5B对应于典型尺寸为200mm(长)×150mm(宽)×200mm(高)的PORT A/BUOY-LEDIF系统的封装结构(例如,壳体或外壳)。

传感器布局:LEDIF包括:(1)流通池;(2)一系列光学模块或系统;(3)数据记录系统;(4)配电板和机载计算机;以及(5)电池,它们全部被封装在高度紧凑的200(Φ)×300mm(长)的圆柱状外壳内,例如,所述外壳可以被无缝地集成到自主式机器鱼小团队(STARFish)AUV。图6A是LEDIF传感器布局的示意图,图6B是本公开的实施例的具体LEDIF元件和对应的LEDIF操作或处理的框图。

流动输送:图7示出了本公开的典型实施例的流动输送歧管(例如,贯穿壳体的歧管)的流体腔,图中的尺寸是以毫米为单位标示的。当LEDIF系统横向穿过场地时,采用独特设计的贯穿壳体的流动输送歧管将新鲜的样本连续供给至流通池10中以替代现有的样本(现有的样本被推向出口)。流通池10的入口是锥形的(例如,依照漏斗状)以促进或增强流体流入流通池10中。可以使传感器模块的横向速度自动同步于流动供应的速率,具有与图8A所述的横向速度相关的保持时间/延迟时间,从而使得对于主平台能够易于提取感测的位置和时间。图8B和图8C示出了在对应于100米深度和3节速度的模型化条件下的流通池的模型化内部流场(例如,对应于等流速线(m/s))和相关的网格密度验证。这种简单而有效的设计特别适合于自主式航行器平台,这是因为它不需要使用泵,因此有利于紧凑封装并降低了功耗。

流通池:高度紧凑的(尺寸~37mm(W)×61mm(L))多光学接头的光学流通池10允许在同一流通池10内同时存在用于荧光测量、吸光度测量和浊度测定的多激发光学系统的仪器。流通池10被设置得与外壳的液体入口和出口不在同一直线上;液体从侧面进入和离开流通池10,这有效防止了杂散光进入流通池10,因此简化了感测期间的背景去除。

激发-发射光学系统:已经开发了一系列超紧凑(尺寸~12.7(Φ)×25.4-50.8mm(L))的光学模块、装置或系统,这些光学模块、装置或系统能够使与用于诱导荧光的一种以上封装类型(诸如,InGaN基板上的TO-39和HS(异质结构))相对应的商用低成本LED的生产量最优化,并且能够使聚光透镜与用于采集发射光谱的束阵列跳线(或单芯)光纤的耦合最优化。

配电板:图9是本公开的实施例的LEDIF配电板的电路图。LEDIF配电板可以是用于低功率原位感测平台的通用电源管理与控制系统。LEDIF配电板能够以5或12伏特对各种负载供电,并且具备对各种类型的负载实施可编程控制以限制不必要的能耗的能力。本质上,LEDIF配电板提供下列功能和/或执行下列功能:(1)将外部20~70伏特(诸如来自电池)降为5伏特的DC-DC转换;(2)对外部20~70伏特降为12伏特的DC-DC转换的编程控制;(3)当配电板被供电时处于常开状态的连接至5伏特的一个连接;(4)以2.5A连接至5伏特的两个程序化控制的独立连接;(5)以2.5A连接至12伏特连接的一个可编程控制的连接;(6)额定100mA、用户可选择5伏特或12伏特的八个电流限制的、可编程控制的输出;以及(7)额定20mA、5伏特的三个可编程电流输出。可编程控制的5伏特和12伏特连接可用于对诸如光谱仪、宽带吸光度灯(broadband absorbance lamp)、泵或10/100Mbps开关等外部设备供电。八个电流限制输出和三个可编程电流输出可用于对LED或其它恒流设备供电。

软件:开发了对使用标准C/C++库以C++写入的软件平台(称作iLEDLIF),以通过在Debian Linux操作系统上运行的嵌入式计算机系统来操控各种传感器和致动器之间的异步通信。图10示出了本公开的典型实施例的iLEDLIF源代码处理。iLEDLIF操控通过串口、USB、RJ-45、数字输入/输出和/或其它接口或连接与外部设备的通信,并操控与完全以软件执行的虚拟设备的通信;并且通过EML配置文件对启动进行完全配置。iLEDLIF用作程序启动时加载的各实体设备与虚拟设备之间的消息载体。每个消息指定了:(1)消息源设备;(2)消息目标设备;以及(3)通过消息传送的信息。每个设备在其驱动器内实施对特定消息的处理或响应一种或多种方式。任何设备可尝试向任何其它设备发送任何消息。以先入先出为基础来传递消息,并且在设备驱动器内将消息排队。设备驱动器以先入先出为基础来操控每个消息。

iLEDLIF的操作可能包括下列情况:(1)从XML配置文件接收或读入配置细节;(2)加载用于文字设备和虚拟设备的设备驱动程序;(3)等待由任何文字或虚拟设备发起的通信,以使得(a)如果接收到消息,则将该消息发送至消息目标设备驱动器;以及(b)所述消息目标设备驱动器根据接收到的消息执行适当的动作。在各种实施例中,iLEDLIF软件平台包括提供软件用户接口的内置脚本语言,该接口使得用户能够生成用于指定一系列指令的文本文件,而无需写入、编辑或理解传统的编程语言(例如,C++)代码。图11示出了根据脚本语言写入的用户生成的程序或脚本的典型示例。执行这样的脚本会导致通过6个LED波长的循环以进行发射光谱测量,接着重复两次该循环。还获得了背景的参考扫描。

数据记录器:可以用光谱仪(诸如,Ocean Optics Model USB4000或STS)来记录发射光谱,且在AUV或类似类型的应用中,可通过使用机载计算机(例如,技术系统型号TS-7260)的AUV MCU将数据存储或中继至护航船。

评估:图12A示出了本公开的实施例的LEDIF传感器的实验室混合物的荧光峰与诸如Perkin Elmer LS55等典型的高端的基于实验室的荧光计的实验室混合物的荧光峰之间的比较。由于对光子比的计数的差异,将Perkin Elmer LS55荧光计的强度乘以~63.5的校正系数,从而将强度有效提高至用LEDIF测量的同一数量级。两个传感器所观察到的峰的百分比差为0.07%和0.12%,这呈现出非常好的一致性。

图12B示出了通过本公开的实施例的LEDIF传感器从文莱的泥炭地获得的野外样本(0.2nm过滤后的泥炭地样本)的典型发射光谱。在考虑了野外样本中的腐殖质的“蓝移”效应后,两个传感器之间的最大百分比差是2.6%,这呈现出非常好的一致性,尽管腐殖质具有非常宽的荧光峰。(II)

图13示出了用于测试本公开的实施例的LEDIF传感器的关于检测和识别多种化合物的性能的复杂混合物的典型发射光谱和激发-发射矩阵(EEM)光谱,具体来说,所述复杂混合物是5ppm叶绿素a、0.2ppm罗丹明B、5ppm腐殖质、0.135ppm芘和1ppm萘的水混合物。传感器能识别混合物中的每种化学物质的峰,且识别的峰与任何给定的单一化学物质的典型的公布的峰具有非常好的一致性。应注意的是,比较数据主要取自PhotoChemCad,并且这些数据通常是关于已经溶解在不同溶剂中的化合物(例如,环己烷中的萘),这可能有助于报告峰中的小的百分比差异。LEDIF的多激发使得构造原位EEM成为可能。

图14示出了本公开的实施例的LEDIF传感器的对于罗丹明B的典型的吸收光谱、比尔-朗伯相关性和透射测量。由LEDIF传感器测量的吸收峰与由制造商(Panreac)报告的测量结果一致。由PhotoChemCad报告的溶解在乙醇中的罗丹明B的吸收峰呈现出与LEDIF所报告的吸收峰峰非常类似的峰和轮廓。LEDIF传感器表明2ppm罗丹明B仍符合比尔-朗伯相关性。

图15示出了用于通过本公开的实施例的LEDIF传感器进行的浊度测定的典型线性校准曲线(IT=200ms,且λEx=405nm)。LEDIF传感器显示出能够测量低至0.1NTU的浊度测定,从而证明了它在评估被处理饮用水中的应用(典型范围<1NTU)。40NTU的范围不是对LEDIF传感器的限制,而是200ms处的405nm激发波长的饱和点。通过以较小的积分时间和/或以不同的LED来校准,可使范围扩大。基于采用本光谱仪的3.8ms的最小可取积分时间和多激发性能,最有可能导致限制的是液体样本而不是LEDIF传感器。

本公开的具体实施例的各个方面解决了与用于流体感测或表征的现有系统、装置、电路和/或技术相关的至少一个方面、问题、局限和/或缺点。尽管在本公开中已经说明了与特定实施例相关的特征、方面和/或优点,但其它实施例也可以呈现这些特征、方面和/或优点,并且不是所有实施例都必须要呈现出这些特征、方面和/或优点才能落入本公开的范围内。本领域技术人员应当理解的是,一些以上公开的系统、装置、部件、处理或它们的替代选择可以如期望地那样组合成其它不同的系统、装置、部件、处理和/或应用。此外,相关领域的技术人员能对各实施例进行各种修改、变化和/或改进(例如,包含特定滤光器元件)。本文中详述的实施例及其修改/变化以及其它实施例的修改/变化均包含在本公开和所附的权利要求的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号