首页> 中国专利> 控制焊接工艺的方法以及实施焊接工艺的焊接设备

控制焊接工艺的方法以及实施焊接工艺的焊接设备

摘要

本发明涉及一种用熔化电极控制和/或调节焊接工艺的方法,其中,在点燃电弧后,通过焊接电源(2)来进行一个基于几个焊接参数而被调节的焊接工艺,所述焊接工艺通过一控制装置(4)被控制或调节。本发明还涉及一种用于执行该工艺的相应焊接装置,为了执行所述方法,为了调节和/或调整和/或控制热平衡以减少引入工件的热量,至少两个不同的工艺阶段被循环组合,所述工艺阶段通过不同的材料过渡和/或电弧类型而具有不同的能量输入,例如脉冲电流阶段(27)和冷金属过渡阶段(28),以影响和控制热平衡,特别是引入待加工工件的热输入。

著录项

  • 公开/公告号CN1871093A

    专利类型发明专利

  • 公开/公告日2006-11-29

    原文格式PDF

  • 申请/专利权人 弗罗纽斯国际有限公司;

    申请/专利号CN200480031372.5

  • 发明设计人 约瑟夫·阿特尔斯梅尔;

    申请日2004-10-21

  • 分类号B23K9/09(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人王永建

  • 地址 奥地利佩滕巴赫

  • 入库时间 2023-12-17 17:55:29

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-09-22

    授权

    授权

  • 2007-01-24

    实质审查的生效

    实质审查的生效

  • 2006-11-29

    公开

    公开

说明书

技术领域

本发明涉及一种用熔化电极控制焊接工艺或者焊接电源的方法,其中基于几个不同的焊接参数而被调节并通过一控制装置被控制的焊接工艺由焊接电源在点燃电弧之后来实施。

本发明还涉及一种焊接设备,包括焊接电源、控制装置和焊炬,其中不同的焊接参数可以通过设在焊接设备上的输入和/或输出装置或者一遥控器来进行调节。

背景技术

在现有的焊接工艺中,所有的参数都是可以通过设在焊接设备上的输入和/或输出装置来调节的。在进行这种操作时,选择一种适当的焊接工艺,例如脉冲焊接(pulse welding)工艺或者喷弧焊接(spray arc welding)工艺或者短弧焊接(short arc welding)工艺,并相应地调节参数。另外,通常也可以选择一种适当的点燃过程来点燃电弧。如果焊接过程随后开始,则要在用调节过的点火工艺点燃电弧后执行焊接工艺例如脉冲焊接工艺。在进行这种操作时,可以在焊接过程中为选择的焊接工艺改变不同的参数,例如焊接电流、焊丝前进速度等等。然而切换到另一种焊接工艺例如喷弧焊接工艺是不可行的。在这种情况下,必须中断刚刚执行的焊接工艺例如脉冲焊接工艺,然后必须在焊接设备上进行新的选择和调节来初始化另一种焊接工艺例如喷弧焊接工艺。

US2002/153363A1涉及一种焊接方法,其可以很好地桥接极小的焊接装配间隙从而得到良好的焊接质量。为此,改变相对于焊丝传送速度的焊丝熔化速率,以控制电弧的热分布。这可以通过常规的改变焊接参数例如焊接电流或者焊丝传送速度来实现。

US6515259B1涉及一种用于铝的焊接方法,其通过焊接参数例如脉冲形式、脉冲宽度或者焊接电流的前缘(leading edge)来控制电弧的热量。这用于改善铝焊接的焊接质量。

最后,JP04-197579A公开了一种焊接方法,其在产生电弧之前的起始阶段通过流经焊丝的电流来预热物料。这种所述方法仅仅指的是焊接工艺的起始阶段。

发明内容

本发明的目的是分别提供一种能分别控制焊接工艺和焊接电源的上述方法,其可以调整和/或控制引入工件中的热量的热平衡。

本发明的另一个目的是提供一种上文提到过的焊接设备,其可以调整和/或控制引入工件中的热量的热平衡。

本发明的第一目的是通过由不同材料过渡和/或电弧类型而导致的具有不同能量输入的至少两个焊接工艺阶段在焊接过程中循环组合来影响或控制热平衡特别是引入待加工工件的热量的热平衡来实现的。优点在于所选择的不同的焊接工艺阶段循环组合可以控制热平衡特别是引入工件中的热输入。从而,例如由几个脉冲的脉冲焊接工艺组成的焊接工艺阶段之后可以接着一冷金属过渡焊接工艺的焊接工艺阶段,在该冷金属过渡阶段中移动焊丝直到焊丝接触工件,即熔池,然后在焊丝从熔池中缩回的时候熔滴被分离。在该冷金属过渡焊接阶段中,基本上工件即熔池中会被引入比之前脉冲焊接阶段更少的能量,也就是更低的焊接温度。通过由不同焊接工艺阶段循环组合或交替进行来构成的焊接过程,可以控制热平衡,特别是引入工件的热输入。通过降低工件特别是待焊金属板的热输入,可以大大减少工件的变形。另一个优点在于由于可以通过焊接设备来调整热输入,所以该焊接工艺可以被使用者以最优化的方式适应工件的需要。

在这个方面,在一焊接过程中不同的焊接工艺阶段,特别是包括至少一种具有高能量输入的焊接工艺阶段和一种具有低能量输入的焊接工艺阶段可以进行循环组合。从而可以选择性地控制热平衡。

然而,根据权利要求3至5的结构也是很有好处的,其中焊接工艺阶段由商业可用的焊接工艺组成,且可以通过采用特定的具有低能量及低热量输入的焊接工艺阶段来进行简单的热平衡控制。

另外,根据权利要求6至8的结构也是有利的,其通过采用一种冷金属过渡焊接阶段来大幅度减小工件的热输入。

根据权利要求9和10的结构的优点在于根据本发明焊接方法的不同焊接工艺阶段的比例,即焊接阶段的持续时间和/或在一焊接阶段中的脉冲数目,可以通过控制装置按照所需热输入的函数来自动改变。例如对于较大厚度的工件,可以改变上述比例,从而使具有高能量输入的焊接工艺阶段的比例高于小厚度工件。

并且,根据权利要求11至13的设计也是有利的,因为其使得用户可以直接调节焊接工艺的热平衡。

根据权利要求14的设计也是有利的,其使用现有技术中一种公知的方法,即所谓的提升起弧原理(lift-arc-principle)来开始焊接工艺,即,点燃电弧。通过这种接触式点燃,将焊丝置于工件上,然后略微抬起,同时接通焊接电流,从而点燃电弧。

根据权利要求15的变型实施例通过一种简单的方法保证了电弧的稳定性。

根据权利要求16的结构的优点在于在冷金属过渡焊接阶段可以冷却工件,从而大大降低在整个焊接期间工件的总热量输入。

并且,根据权利要求17的结构也是有好处的,其可以大大加速焊接过程。通过这种方式,例如在脉冲焊接工艺的基础电流阶段就不会有很大的时间延迟。

本发明的目的还通过上述焊接设备来实现,其中热平衡或者待加工工件的热输入的至少一个参数可以在焊接设备的输入和/或输出装置和/或遥控器上进行选择,和/或设置有一个调节件通过至少两个具有不同能量输入的焊接工艺阶段的循环组合来调节热平衡或待加工工件的热输入。

在权利要求19-29中描述了其它的优选结构。其优点从说明书以及前述权利要求1至17的介绍中可明显看出。

附图说明

下面将通过附图来详细介绍本发明。附图中:

图1是一种焊接机或者焊接设备的示意图;

图2示出了根据本发明的焊接工艺实施例的焊接电压的时间关系图;

图3示出了根据图2焊接电压的焊接电流的时间关系图;

图4示出了和图2焊接电压过程相对应的焊丝速度V的时间关系图;

图5示出了和图2焊接电压相对应的、作为时间t函数的焊丝相对于工件的大概位置;

图6表示用于另一焊接工艺设计的焊接电压U的时间关系图;

图7表示焊接电流I的相关时间关系图;

图8表示焊丝速度的相关时间关系图;

图9示出了相关的作为时间函数的焊丝相对于工件的大概位置;

图10示出了根据本发明的焊接设备的输入和/或输出装置。

具体实施方式

图1示出了焊接设备1或焊接机1,其用于各种工艺或方法,例如MIG/MAG焊或WIG/TIG焊,或者电极焊方法,双丝/双线焊,等离子或钎焊等。

该焊接设备1包括电源2,其包括一电源件3、一控制装置4和一分别与电源件3及控制装置4相连的开关元件5。该开关元件5和控制装置4与一设置在供应管线7上的控制阀6相连,供应管线用于供气8,特别是一种保护气体例如二氧化碳、氦气或者氩气及类似物,供应管线位于气体储存器9和焊炬10或焊枪之间。

另外,一个在MIG/MAG焊接中经常使用的送丝装置11可由控制装置4控制,从而可以从进给筒14或者线盘通过供应管线12将辅助材料或者焊丝13进给到焊炬10的区域。当然正如本领域公知的,也可以将送丝装置11和焊接设备1特别是其基本壳体制成一体,而不是将其设计成一个如图1所示的附属装置。

送丝装置11也可以输送焊丝13或者辅助材料给焊炬10外侧的处理点,在该端部优选在焊炬10内设置一不熔化电极,和WIG/TIG焊接中经常使用的一样。

形成电弧15特别是在电机和工件16之间的工作电弧所需的电能从电源2的电源件3通过焊接线路17供应给焊炬10,尤其是电极,其中所要焊接的工件16由几部分构成,同样通过另一焊接线路18连接到焊接设备1,特别是电源2,从而在电弧15上或者形成的等离子流上建立一用于处理过程的电路。

为了提供焊炬10的冷却,焊炬10通过一带有流量控制器20的冷却回路19与流体储存器相连,具体是和水储存器21相连,从而该冷却回路19并且具体是用于装在水存储器21中的流体的一流体泵在焊炬10工作时起动,从而冷却焊炬10。

焊接设备1还包括一输入和/或输出装置22,通过它可以分别设置以及调用焊接设备1的大多数不同的焊接参数、工作模式或焊接程序。在进行这种操作时,通过输入和/或输出装置22设定的焊接参数、工作模式或焊接程序被传送到控制装置4,其接下来控制焊接设备1的单独组件和/或预定用于控制的各设定值。

在图示的示例性实施例中,焊炬10还通过软管组件23与焊接设备1或焊接装置连接。在软管组件23中,布置有从焊接设备1通向焊炬10的多个专用线。软管组件23通过连接装置24与焊炬10连接,而布置在软管组件23中的专用线通过连接插座或插入式连接与焊接设备1的专用接点连接。为了确保软管组件23合适的张力释放,软管组件23与壳体26连接,并且具体是通过张力释放装置25与焊接设备1的基本壳体连接。当然也可以用连接装置24来连接焊接设备1。

基本上需要注意的是对于各种焊接方法或者焊接设备1(例如,WIG装置或者MIG/MAG或者等离子装置)来说不是所有先前提到过的所有组件都是必须使用的。因而,可以将焊炬10设计成一种气冷式的焊炬10。

图2至5示意性地示出了根据本发明的一种焊接工艺实施例,其由一种循环组合过程构成,或者由一种通用焊接工艺阶段(具体是脉冲电流阶段)和冷却金属过渡阶段构成。在该冷却金属过渡阶段中,同样可使焊丝13与熔滴分离。图2示出了焊接电压的时间关系图,图3示出了焊接电流I的时间关系图,图4示出了焊丝13的速度V的时间关系图,图5示出了作为时间t的函数的、焊丝13相对于工件16的大概位置。

根据本发明的焊接工艺的起始阶段用于电弧15的点燃,其通过例如所谓的提升起弧原理26a实现。因而,当开始点燃过程时,焊丝13朝着工件16方向移动,同时用一个稍增加的焊接电流I来防止焊丝13在第一次接触时在工件16上的初始熔化。在第一次接触时,即在短路中,再次增加焊接电流I来防止焊丝13的初始熔化。在焊丝13往回移动期间,在焊丝离开工件16时产生电弧15,然后焊丝13从工件16向与焊丝再次进给方向相反的方向移动到一个预定距离处。

在点燃电弧15之后,也可以在适当焊接工艺之前,进行一个第一短处理阶段26b,即在一个有限时间阶段内增大能量输入,然后再启动由循环组合的焊接工艺阶段构成的焊接工艺。由此带来的好处是,该增加能量输入的短处理阶段26b使电弧15稳定。此外,焊丝13在点燃阶段被加热,因而接下来的焊接工艺是从一个预热的焊丝13开始的,这会提高焊接质量。

在根据本发明的焊接工艺中,关键在于热平衡特别是引入工件16的热输入由至少两个不同的焊接工艺阶段组成的循环组合来进行影响和控制,该至少两个不同的焊接工艺阶段包括不同的材料过渡和/或电弧类型。在所述焊接工艺中,具有高能量输入的焊接工艺阶段与一个具有低能量输入的焊接工艺阶段(特别是一冷却金属过渡阶段)交错进行,用以选择性地控制和影响工件16的热平衡。

在图2至5示出的焊接工艺实施例中,脉冲电流阶段27和冷金属过渡阶段28循环组合。不再对脉冲电流阶段进行详细说明,因为这已经是现有技术中公知的技术。仅需要提到的是该脉冲电流阶段27通过采用一电流脉冲来使熔滴与焊丝13分离,然后并入基础电流阶段35。这种特别采用脉冲电流阶段27和冷金属过渡阶段28的循环组合使得冷金属过渡阶段28可以在脉冲电流阶段的基础电流阶段35进行,这意味着焊接电流I在脉冲电流阶段使熔滴分离之后降低,然后并入基础电流阶段35,然后在基础电流阶段35执行冷金属过渡阶段28,然后再次转变成脉冲电流阶段27。

正如将参考图6到9来详细介绍的,可以通过一种焊接工艺的几个连续的相同焊接工艺阶段例如脉冲电流阶段来实现不同焊接工艺阶段的循环组合,并仅在设定时间执行一次或连续几次至少另一个焊接工艺阶段,例如冷金属过渡阶段28。

在冷金属过渡阶段28期间,焊丝13从起始位置(即距离30)朝着工件16方向移动,正如明显看到的可从时间29开始。焊丝13朝向工件16方向移动直到在时间31时接触工件。在形成短路之后,向相反方向进给焊丝,焊丝13再次向远离工件16的方向移动到预定距离30,其优选为起始位置。为了在脉冲焊接工艺的基础电流阶段35中进行的冷金属过渡阶段28期间形成焊丝端部的初始熔化或者熔滴,要改变焊接电流I,具体来说是在焊丝13朝着工件16方向移动时相对基础电流阶段35的基本电流增加焊接电流I,如明显看到的从时间29开始。在冷金属过渡阶段28与另一焊接工艺阶段交替时,电流I被控制成可以在焊丝13向前移动时形成初始熔化。通过将焊丝13浸入熔池并在此之后向后移动焊丝,可以让熔滴32或者略微熔化的材料从焊丝13上分离(图中未示出)。在这种情况下,当然可以使焊接电流脉冲式增加,以促进熔滴分离。

另外,可以在冷金属过渡阶段28中改变特别是增加焊丝前进速度V,以确保在冷金属过渡阶段28中快速实施焊接过程。

总而言之,根据图2到5的焊接工艺实施例以这样一种方式进行:即,在时间33时,即在初始阶段之后,启动脉冲电流阶段27,使焊接电流I增加,从而在焊丝端部形成熔滴。在一段足够长的时间内保持焊接电流,以确保熔滴32从焊丝13上分离。当然也可以通过短时间增加电流I来使熔滴32从焊丝13上分离。在完成脉冲电流阶段27的时间34之后,焊接电流I被降低为基础电流阶段35的基础值36,从而保持电弧15。然后,在基础电流阶段35之后的一可调时间段到期之后开始冷金属过渡阶段28。在完成冷金属过渡阶段28之后,优选再维持一给定时间段的基础电流阶段35,然后再开始脉冲电流阶段27并执行两个焊接工艺阶段的循环重复。

热平衡主要由组合的焊接工艺阶段来影响。这是由于冷金属过渡阶段28的脉冲能量特别是焊接电流I低于脉冲电流阶段27的脉冲能量,特别是焊接电流I。具体来说,在冷金属过渡阶段28期间获得了一种非常冷的金属过渡,这是由于熔滴分离是通过施加一个非常低的仅是重新点燃电弧15所必需的电流I来来完成,从而只有很少的热量引入工件16。因此,可以适当地冷却工件16,从而可以控制热平衡或者引工件的热输入。

通过图6到9介绍另一个典型实施例。在该焊接工艺中。在三个连续的脉冲电流阶段27之后接着三个连续的冷金属过渡阶段28。通过这样,显然可以一个接一个地进行一种焊接工艺的几个相同的焊接工艺阶段,因此可以进行另一个不同的焊接工艺的一个或多个焊接工艺阶段,所述过程循环重复进行。

基本上,可以控制热平衡,以便通过检测工件16的温度以及在焊接设备1处预先设定一个确定的热输入来提供从一个焊接工艺阶段向另一个焊接工艺阶段的自动切换,这表示将工件16的温度传递给焊接设备1的控制装置4,从而后者来决定是否确实需要切换到冷金属过渡阶段来冷却工件16。

在图6到9所示的实施例中,通过增加电流I脉冲电流阶段27从时间37开始。这种增加使得可以在焊丝的端部形成熔滴。在一段预定时间后(时间38),熔滴32从焊丝13上分离,然后结束脉冲电流阶段27且基础电流阶段35开始。在基础电流阶段35中,焊接电流I降低到基础值36以保持电弧15。在三个连续的脉冲电流阶段27和基础电流阶段35之后,在时间39开始冷金属过渡阶段28,然后焊接电流I增加一个有限量。然后焊丝13朝着工件16方向移动直到接触工件,即直到产生短路为止。然后以如下方式使熔滴分离:在焊丝13向后移动过程中,即在形成短路之后,由于熔池的表面张力,熔滴32被从焊丝13端部拉掉,这意味着通过向后移动焊丝将熔滴实际上向后拉。在进行这种操作时,当然可以通过增加特别是脉冲式增加焊接电流I来促进熔滴分离。在熔滴分离之后,焊丝13再次移回到初始位置,即位置30,从而由于熔滴32分离和焊丝从工件16离开之后有一个微小电流供给,所以自动点燃电弧15。在该示例性实施例中,上文已经介绍过三个冷金属过渡阶段28一个接一个地进行,从而在此期间基本上较少的热量被引入到工件16中,从而在焊接过程中影响热平衡。因此,工件16受到较小的张力,这也可以大大降低工件16的变形。

下面结合图10来介绍焊接设备1的一种特殊结构,其可以被应用在或调整为应用在至少两个不同阶段构成的焊接工艺中。该焊接设备包括一焊接电流源或者电源2、一控制装置4和一焊炬10。通过一输入和/或输出装置40,可以在焊接设备1上调整各种焊接参数,或者通过一遥控器来调整。在焊接设备的输入和/或输出装置40上,和/或遥控器上,可以为热平衡或者引入待加工工件的热输入来选择至少一个参数,和/或可以设置一个调节件,通过至少两个焊接工艺阶段的循环组合来调节热平衡或引入待加工工件的热输入。将设定参数传递给焊接设备1的控制装置4,以使前者来控制各焊接工艺。在输入和/或输出装置40中,对于焊接工艺来说最不相同的参数,例如焊接电流I和/或焊接电压U和/或焊丝传送速度V和/或用于热输入的焊接参数和/或待焊工件16的材料和/或焊丝13的材料和/或所用的焊接气体都可以被设定。另外,设置选择或者调节件46用于调整在焊接工艺中循环交替进行的至少两个焊接工艺阶段的参数,以调节和/或控制热平衡或待加工工件16的热输入。焊接工艺阶段的比例,即脉冲电流阶段的脉冲数以及冷金属过渡阶段的脉冲数之比,或者第一焊接工艺阶段与第二焊接工艺阶段的持续时间之比,都可以在焊接设备1上通过调整参数来控制。从而可以通过对公知焊接参数的简单调整来实现或控制热优化的焊接工艺。

可以从显示屏41上读取生效的调整。在图示的输入和/或输出装置40上,用选择或者调节件46、47、48来进行调节,选择或调节件可以是按键、旋钮或者电位计形式的。例如,可以通过第一键46来调整焊丝13的厚度,在显示屏42上示出了相应的调节。例如,可以通过第二列键46来选择焊丝13的材料,且在显示屏43上示出了所调整的材料组合。通过第三组键46,可以通过交替不同的焊接工艺阶段来改变焊接工艺类型,其在显示屏44上示出。最后,热平衡的选择,即引入工件16上的热输入的选择,可以通过另一组键46来进行调节,在显示屏45上示出了选择情况。在显示屏44上可以表示出下面的循环交替焊接工艺阶段:脉冲电流阶段和冷金属过渡阶段,短弧焊接阶段和冷金属过渡阶段,脉冲电流阶段和喷弧焊接阶段,以及脉冲电流阶段和短弧焊接阶段。显然,不同焊接工艺阶段的其它组合也是可行的。

通过控制按钮47,可以单独改变电流密度I或者焊接电压U、焊丝前进速度V等等。通过另一个控制按钮48,第一焊接工艺阶段例如喷弧焊接阶段相对于第二焊接工艺阶段例如冷金属过渡阶段的持续时间和/或在变到冷金属过渡阶段之前脉冲电流阶段的脉冲数可以被调整。从而,用户可以设定焊接工艺中第一、第二阶段的持续时间和/或各焊接工艺阶段在变为另一焊接工艺阶段之前所要执行的脉冲次数。从而,具有高能量输入的焊接工艺阶段的脉冲次数和持续时间可以在变为具有低能量输入的阶段之前自由调整。

然而,热平衡或者引入工件16的热输入也可以进行调整,用户要调整一常规的焊接工艺,并通过附加设定另一个参数例如热输入来确定热平衡,该参数可以通过键46进行选择且在显示屏45上显示出。在进行这种操作的过程中,用户可以通过在显示屏45上进行适当选择以简单的方式来确定例如是否要进行低、中或者高的热输入,以使控制装置4来执行相应的控制操作。为此,要存储对应于各选择操作的适当数据或者计算模型以进行自动设定。

然而,也可以通过例如控制旋钮48来按百分比控制工件16所需的热输入。控制装置4控制具有低能量输入的阶段与具有高能量输入的阶段的比例。控制旋钮48可以具有适当的比例尺,来使用户通过简单的选择来调整热输入。从而,控制装置4来控制具有低能量输入的焊接方法和具有高能量输入的焊接方法的比例。

另外,各焊接阶段的持续时间可以在焊接设备1上作为焊接电流密度I的函数来进行控制,具体来说以一种与焊接电流或者调整功率成正比的方式。这可以用控制按钮47来按照输入和/或输出装置40调整的功率或电流的函数由控制装置4改变脉冲电流阶段27和冷金属过渡阶段28之间的比例来实现。例如,可以这样实现,在调整的低功率下,即低电流,例如50A,以及对于一个包括脉冲电流阶段和冷金属过渡阶段的焊接工艺,执行具有高热量输入的脉冲电流阶段27的脉冲次数减少而执行冷金属过渡阶段28的次数增加。从而较少的热量引入到工件16。然而,如果用户增加功率即电流到100A,则将执行比冷金属过渡阶段28更多次数的脉冲电流阶段27,从而给工件引入更多的热量。焊接工艺各独立阶段的比例可以存储在焊接设备1中,从而用户只需要调整功率,控制装置4就能设定两个交替的焊接工艺阶段的比例。

另外一个选项是在整合到焊接设备1中的存储器中存储各焊接工艺的数据,从而控制装置4可以在这些数据的基础上控制该焊接方法。这样,用户只需在焊接过程之前进行少量的调整,控制装置4就可以自动控制焊接过程。在这种情况下,热平衡以及工件16内的热输入可以具体地由焊丝13以及所要焊接的工件16的材料的选择而确定。考虑到这点,焊丝13和工件16最不同材料的值可以分别储存在存储器中,从而控制装置4可以按照所选材料的函数来确定交替焊接工艺阶段的比例。例如,对于铝的焊接过程,比起钢焊接工艺来说需要给工件较少的热输入。因而,对于铝来说存储的数值要比钢的低。

当然,也可以通过确定脉冲电流阶段27的脉冲数目或者通过预先设定或确定一个时间段、或者通过施加一个触发信号来起动执行冷金属过渡阶段28。

不言而喻,上述各调节选项可以相互结合和/或可以在焊接设备1上设置几个调节选项。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号