首页> 中国专利> 流体静力学驱动器及流体静力学驱动器的制动方法

流体静力学驱动器及流体静力学驱动器的制动方法

摘要

本发明涉及一种流体静力学驱动器(1)并涉及一种制动流体静力学驱动器(1)的方法。在所述流体静力学驱动器(1)中,在闭合回路中,液压泵(3)通过第一和第二工作管线(11,12)连接到液压马达(4)。所述静液压驱动器(1)包括制动器开动装置(37)以及至少一个减压阀(26,30),所述减压阀(26,30)连接到位于液压马达(4)的下游的工作管线。当检测到所述制动器开动装置(37)开动时,所述液压泵(3)可被调节至制动传输速度。如果所述制动器开动装置(37)的开动强度增加,则所述液压马达(4)根据所述制动器开动装置(37)的开动强度沿着吸收量更大的方向进行调节。

著录项

  • 公开/公告号CN101156007A

    专利类型发明专利

  • 公开/公告日2008-04-02

    原文格式PDF

  • 申请/专利权人 博世力士乐股份有限公司;

    申请/专利号CN200680011046.7

  • 发明设计人 马丁·贝姆;

    申请日2006-12-15

  • 分类号F16H61/42;F16H59/54;B60W10/18;B60W30/18;B60W10/10;

  • 代理机构北京德琦知识产权代理有限公司;

  • 代理人陆弋

  • 地址 德国美因河畔的洛尔

  • 入库时间 2023-12-17 20:02:40

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-04-25

    授权

    授权

  • 2008-05-28

    实质审查的生效

    实质审查的生效

  • 2008-04-02

    公开

    公开

说明书

技术领域

本发明涉及一种流体静力学驱动器的制动方法和这种流体静力学驱动器。

背景技术

流体静力学驱动器常常被使用以驱动用于工具操作的液压系统或在建筑场地车辆中的车辆驱动系统。在这种情况下,诸如内燃机的主驱动源被连接到至少一个液压泵。为了驱动车辆,液压马达大多在闭合回路中连接到这种液压泵。由于车辆的质量惯性,在制动车辆的过程中,此后通过车辆车轮驱动的液压马达用作泵,并在不逆转流动方向的情况下在闭合液压回路中传输压力介质。因此,在其吸收侧承载压力介质的液压泵相应地用作液压马达,并产生与内燃机作用相反的输出转矩。

在诸如叉车的低速行进的车辆中,车辆驱动系统的流体静力学传动装置通常也用于制动车辆。为此,已知使用液压泵进行与内燃机的相反作用。因此,可实现的制动功率受限于内燃机的可用制动功率。从DE 19892039A1进一步已知的是,将第二可变排量液压泵连接到泵轴。这种第二可变排量液压泵被置于开放回路中并被设计为仅用于单向传输。通过第二可变排量液压泵传输的压力介质可在制动操作中通过减压阀被释放回到箱容积中。在这种情况下,通过随制动踏板的渐进开动而增加向减压阀的流量供给的阀,限制朝向减压阀的流量。

所描述的驱动系统的缺点在于,除了液压泵和液压马达及其相应的驱动回路以外,需要另外的液压泵以产生制动效果。因此,除了调节流体静力学传动装置的液压泵和液压马达以外,还另外必须调节所述另外的液压泵的传输速度。而且,通过减压阀被释放的所述另外的液压泵的传输流速不得不通过可调节阀进行调节。因此,制动操作不仅包括除了驱动系统,还包括用于实现操作的液压系统进行制动所需的开放回路。

发明内容

本发明的主要目的在于,提供一种流体静力学驱动器和一种制动流体静力学驱动器的方法,其允许专门通过设置在闭合液压回路中的元件执行制动操作。

上述目的通过分别具有如权利要求1和8所述特征的根据本发明的流体静力学驱动器和根据本发明的方法而得以实现。

根据本发明的流体静力学驱动器包括在闭合回路中的液压泵。在闭合回路中,液压马达通过闭合回路的第一和第二工作管线连接到所述液压泵。所述流体静力学驱动器进一步包括制动器开动装置和至少一个减压阀,所述减压阀连接到位于所述液压马达的下游的工作管线。当所述制动器开动装置开动时,所述液压泵可被调节至制动传输速度。所述液压马达可根据所述制动器开动装置的开动强度,随着所述开动强度沿着吸收量更大的方向增加而被调节。在这种情况下,制动传输速度选择为,在惯性下降的过程中通过用作泵的液压马达传输的压力介质的至少一部分通过减压阀释放。在这种情况下,不得不减少的动能被转化为热。当制动传输速度对应于液压泵的零冲程时,产生了简单的解决方案。对于这样的制动操作而言,不需要额外的液压泵。而且有利的是,用于保护流体静力学驱动器的闭合回路的工作管线的减压阀,被可能在制动操作过程中被使用。

在根据本发明的优选方法中,在这样的驱动器中,首先检测制动器开动装置的开动。当检测到制动器开动装置的开动时,所述液压泵被调节至制动传输速度。然后,根据所述制动器开动装置的开动强度,将液压马达的吸收量设置为对应的吸收量,其中,液压马达随着开动强度的增加而沿着吸收量更大的方向进行调节。通过液压马达被传输至连接到其下游的工作管线中的压力介质,通过减压阀被释放。

根据本发明的流体静力学驱动器和所述方法的优选实施方案在各从属权利要求中呈现。

具体而言,有利的是,在制动器开动装置开动时,液压马达被初始调节至减小的或消失的传输速度,并由此处开始沿吸收量更大的方向再次转出。将液压马达调节至初始的减小的或消失的吸收量的优点在于,可避免在流体静力学闭合回路中出现压力高峰。

此外,为了利用连接到液压泵的驱动马达的制动效果,有利的是,制动传输速度选择为,具有非零排量的液压泵反作用于驱动马达。因此,将被减少的一些动能通过与驱动马达的反作用而减少,而其余能量通过在减压阀处转化为热而减少。如果此传输速度不为零,则优选的是,在减压阀的初始压力下由液压泵消耗的功率与连接到液压马达的驱动马达的制动器管线〔原文如此〕相同。因此,有利的使用基于以下事实,即,制动效果也可通过使液压泵与液压马达相反作用而实现。将制动传输速度调节至对应于驱动马达的可用制动器功率的传输速度值,在这种情况下提供了优化使用基于驱动马达的可用制动器管线〔原文如此〕的可能性。这减少了在减压阀处的发热,其中仅在动能超过此能量时需要转化为热。

优选的是,液压马达被调节至与制动器开动装置的开动强度的吸收量成比例。这样的对于液压马达的吸收量的比例调节的优点在于,对于根据本发明的流体静力学驱动器所驱动的车辆的使用者而言,提供了可计算的制动效果。如果,例如当测量到刹车踏板上的力的开动强度时,液压马达的调节正比于使用者发出的制动力。这样的液压马达的比例调节有利于操作。

为了能够以相同的方式在两个行进方向上使用流体静力学驱动器和/或制动流体静力学驱动器的方法的功能,优选地在具有在两条工作管线之一中的传输的简单流体静力学驱动器中,有利的是,在闭合回路的两条工作管线中的每一个工作管线设置一个减压阀。因此,有可能独立于在闭合回路中所选的行进方向以及相关的压力介质的流动方向而独立于行进方向实现制动效果。

附图说明

根据本发明的流体静力学驱动器以及制动流体静力学驱动器的方法的优选实施例,呈现在各附图中。所述附图显示出:

图1是根据本发明的流体静力学驱动器的示意图;

图2是第一种方法顺序的简化示意图;和

图3是第二种方法顺序的简化示意图。

具体实施方式

根据本发明的流体静力学驱动器在图1中显示。驱动马达2被用作主驱动源,其通常采用内燃机的形式,优选地采用柴油内燃机的形式。根据本发明的流体静力学驱动器1例如可为用于诸如叉车或建筑机器的流体静力学驱动车辆的流体静力学传动装置,但本发明并不仅限于这样的驱动器。

驱动马达2驱动可变排量液压泵3。可变排量液压泵3设计为用于沿两个方向进行传输,并优选地为倾斜轴或旋转斜盘设计的轴向活塞机器。液压马达4在闭合回路中连接到液压泵3。液压马达4同样被设计为沿两个流动方向工作。液压马达4的吸收量同样可调节。

为了驱动液压泵3,驱动马达2通过驱动轴5连接到液压泵3。液压马达4通过输出轴6连接到例如建筑机器的从动轴7。这里包括了差动轴,其将通过输出轴6供给的输入转矩传送到车辆的车轮9、10。

液压泵3传输到第一工作管线11或第二工作管线12中。液压马达3通过第一工作管线11和第二工作管线12连接到闭合回路中的液压马达4。因此,根据液压泵3的传输方向,产生如图1中所示的顺时针或逆时针方向的流动。在这种情况下,不同的传输方向对应于前进或倒退的运动。

液压泵3的传输方向和传输速度优选地通过第一调节装置13进行调节。如果使用旋转斜盘设计的轴向活塞机器作为液压泵3,则调节装置13开动液压泵3的调节机构,例如,设置在摇动支架中的旋转斜盘。

第二调节装置14以类似地方式设置,其与液压马达4的调节机构相互作用。对于液压马达4而言,可使用可变排量流体静力学机器。液压马达4例如可为倾斜轴或旋转斜盘设计的流体静力学轴向活塞机器。

液压泵3的传输速度和液压马达4的吸收量的调节,通过电控单元15来限定。电控单元15通过第一控制信号线16连接到第一调节装置13,并通过第二控制信号线17连接到第二调节装置14。在正常行驶中,流体静力学传动装置的传动比由电控单元15限定。流体静力学传动装置包括闭合回路以及设置在其中的液压马达4和液压泵3。通过限定液压泵4的传输速度和液压马达4的吸收量,确定了流体静力学传动装置的传动比。在这种情况下,所使用的输入变量例如为未在图1中显示的车辆踏板的位置。

进给泵18连接到驱动轴5并连接到液压泵3。进给泵18采用固定排量泵的形式并被设置为仅在一个方向上进行传输。进给泵18由于固定连接到输入轴5,因此进给泵18以驱动马达2的转速进行转动。

进给泵18从箱容积19中吸取压力介质,并根据输入轴5的转速将其传输到进给管线20中。进给管线20开放到第一连接管线21和第二连接管线22中。第一连接管线21将进给管线20连接到第一工作管线11。第二连接管线22将进给管线20以相应的方式连接到第二工作管线12。

在第一连接管线21中,设置第一进给阀单元23。在第二连接管线22中,以对应的方式也设置第二进给阀单元24。

进给阀单元23和24与进给泵18一起使用,以保持系统压力并在起始阶段中从其初始无压状态填充液压回路。为此,第一进给阀单元23包括第一连接管线分支21′中的第一单向阀25。单向阀25沿第一工作管线11的方向开启。第一减压阀26被设置在第二连接管线分支21″中并与第一单向阀25并联。如果在进给管线20中主导的进给压力超过第一工作管线11中的压力,则第一单向阀25开启且压力介质流出进给管线20,通过第一连接管线21、第一连接管线分支21′以及设置在其中的单向阀25,进入第一工作管线11中。另一方面,如果在第一工作管线11中主导的工作压力高于在进给管线20中的进给压力,则单向阀25转变至其关闭位置并阻断第一连接管线分支21′。

在第二连接管线分支21″中,虽然正常的工作压力上升,但第一减压阀26仍处于其关闭位置。第一减压阀26沿其关闭位置的方向由第一压缩弹簧28加载。在第二连接管线分支21″中主导的压力沿与第一压缩弹簧28的力相反的方向通过第一测量管线27进行作用。在第二连接管线分支21″中主导的压力与在第一工作管线11中的压力相等。在第二连接管线分支21″中主导的压力通过第一测量管线27被传送到第一减压阀26的对应的测量表面。

如果在第一工作管线11中的压力超过由第一压缩弹簧28限定的临界值,则通过第一测量管线27承载工作管线压力的测量表面处的液压力也超过第一压缩弹簧28的力。因此,第一减压阀26沿其开启位置的方向进行调节。第一工作管线11中的压力因而可在第一减压阀26开启的状态下通过第二连接管线分支21″沿进给管线20的方向释放。

第二进给阀单元24具有对应的结构。第二进给阀单元24包括第二连接管线的第三连接管线分支22′中的第二单向阀29,第二单向阀29沿第二工作管线12的方向开启。如果进给管线20中的压力超过第二工作管线12中的压力,第二单向阀29开启。第二减压阀30设置在第四连接管线分支22″中,与第二单向阀29并联。如果由通过第二测量管线31供给的压力在测量表面处所产生的液压力超过第二压缩弹簧32沿相反方向作用的力,则第二减压阀30开启。第二压缩弹簧32沿第二减压阀30关闭位置的方向加载于第二减压阀30。

如果第一工作管线11通过第一减压阀26沿进给管线20的方向释放,而且如果在进给管线20中主导的进给压力高于在第二工作管线12中的压力,则第二单向阀29开启,而且第一工作管线11沿第二工作管线12的方向释放。

为了保护进给管线20以及进给阀单元23和24,设置进给减压阀34。进给减压阀34通过释放管线33连接到进给管线20以及连接管线21和22。进给减压阀34同样为通过弹簧36加载的减压阀。由通过释放管线33的第三测量管线35消除的压力所产生的液压力,沿与弹簧36的力的相反方向作用。如果在进给管线20和/或在连接管线21、22中主导的压力超过由弹簧36限定的最大进给压力,则进给减压阀34沿其开启位置的方向进行调节,而释放管线33被释放到箱容积19中。

对于以下的制动操作的描述,假定初始存在驱动状态,其中,液压泵3传输至第一工作管线11中。这样,图1中的流动方向为顺时针方向。第一工作管线11相对于液压泵3为传输侧的工作管线,并被置于液压马达4的上游。第二工作管线12在沿顺时针方向传输时被相应地置于液压马达4的下游,并形成液压泵3吸收侧的工作管线。如果行驶方向相反,则传输侧和吸收侧以及流动方向相反。

为了检测制动操作,设置制动踏板37。制动踏板37连接到传感器38,当制动踏板37开动时,该传感器通过信号线39传送信号至电控单元15。在所示实施例中的制动踏板37形成制动开动装置。于是如果制动踏板37被开动,则由于传感器38检测到制动踏板37的开动〔原文如此〕和开动强度,传感器38的信号检测到制动操作。传感器38可为角度、距离或力的测量装置,并可相应地检测制动踏板37的开动进程或开动力。对应于这种开动强度的信号通过信号线39传送到电控单元15。

一旦电控单元15检测到存在制动操作,则第一调节装置13和第二调节装置14接收相应的控制信号。液压泵3的第一调节装置13由通过第一控制信号管线16的对应的液压泵控制信号设置至制动传输速度。在最简单的情况下,制动传输速度为液压泵3的消失传输速度,其结果是,流动不可能通过液压泵3。

优选地,液压马达4通过依靠第二调节装置14根据对应的马达控制信号对制动操作的开始进行检测,被初始调节至减小的或消失的吸收量。对于斜盘设计的轴向位置机器的情况,旋转斜盘从液压马达4的此位置开始,再次转出,并因而增加液压马达4的吸收量,其中所述转动的角度随着制动器开动装置的开动强度增加而增加。所述开动强度检测为制动踏板37的距离、角度或作用力。液压马达4以流动进入闭合回路的方向保持不变的方式进行调节。随着制动器开动装置的开动强度增加,液压马达4因而在流动方向不变的条件下逐渐作为泵并将压力介质传输到下游工作管线中。在前述的实施例中,其中闭合回路中的压力介质沿顺时针方向传输,液压马达4从而进行传输至连接到下游的第二工作管线12中。所述开动强度越大,则由液压马达4沿液压泵3的方向产生的压力介质流动量也越大。

如前所述,在最简单的情况下,液压泵3被调节所至的制动传输速度为零传输速度。因此,传输到第二工作管线12中的压力介质不能流过液压泵3。其结果是,第二工作管线12中的压力上升。如果第二工作管线12中的压力超过由第二减压阀30限定的压力值,则第二减压阀30开启并沿进给管线20的方向释放第二工作管线12。

与此同时,在第一工作管线11中的压力下降。所述压力下降是由于液压马达4从第一工作管线11中吸入压力介质所致。随后不会发生液压泵3的压力介质传输,是因为制动传输速度已经被调节为零。在进给压力管线20中的压力因而超过在第一工作管线11中的主导压力,第一单向阀25开启。通过第二进给阀单元24的第二减压阀30以及第一进给阀单元23的单向阀25,已经在第二工作管线12中积累的压力被释放到第一工作管线11中,同时在第二减压阀30处发热。动能由此在第二减压阀30处转化为热。

根据优选的实现方式,液压马达4的吸收量的调节与制动器开动装置的开动强度成比例。不同于所示制动踏板37,制动器开动装置可例如包括适合的手杆。进一步有利的是,液压泵3的制动传输速度不设计为零传输速度。如果使用驱动马达2的可用制动功率,则液压泵3的非零制动传输速度被设置。制动传输速度理想的大小为,在第二减压阀30的开启压力下不超过驱动马达2的可用制动功率,因而不会显著增加驱动马达2的转速。

这就是当液压泵3消耗的液压功率对应于驱动马达2的制动功率的情况。

为了实现使用者所希望的制动调节效果,液压马达4的吸收量优选与制动踏板37的开动强度成比例的进行调节。有利的是,将液压泵3调节至其制动传输速度和当检测到制动操作时将液压马达4调节至消失吸收量同时进行。在这种情况下,特别有利的是,考虑所述泵和马达的自然转动行为。如果液压泵3被调节至非零制动传输速度,则在这种情况下同样优选的是,在初始时进行调节至零传输速度。

图1示意性显示了简单的实施例,其仅具有一个液压马达4。本发明当然可扩展至使用多个液压马达4,其中液压马达通过共用的调节装置或通过单独的调节装置来开动。为了实现制动效果,所提供的一个或多个液压马达以前述方式进行调节。

在图2中,示意性显示了第一方法顺序的示例。从正常操作状态40开始,电控单元15查询制动器开动装置是否传送了信号。如果电控单元15接收到这样的信号,则检测制动操作,而且在步骤42中,液压泵的传输速度被调节至制动传输速度VgP。与此同时,液压马达4的吸收量VgM被转至零。同时调节至零传输速度和零吸收量可防止在闭合液压系统中出现压力高峰。在调节至零传输速度和零吸收量之后时有短暂的间歇。在尽可能快地降低吸收量和传输速度之后的间歇43的目的在于,确保在步骤44之前保持稳定的系统状态,在步骤44中,将液压马达4的吸收量调节至与制动器开动装置的开动强度成比例的吸收量并将液压泵3调节至制动传输速度。在进一步的制动操作过程中,液压马达4的吸收量适应于相应的实际开动强度。

周期地进行关于制动操作是否存在的查询,为此原因,根据图2中的箭头47,存在返回至所述方法起点的跳转。如果在步骤41中的查询结果是不再存在制动操作,则在步骤46中,液压泵3的传输速度和液压马达4的吸收量被调节回到对应于正常驱动模式的值。这种适应同样被电控单元15采用,如前所述,电控单元15根据车辆踏板位置或车辆杆的位置来调节流体静力学传动装置的传动比。流体静力学驱动器1因而再次处于其在速度已改变的初始驱动状态40′。

图3中显示了在制动过程中,所述方法顺序的特别优选的替代实施例。

从正常驱动模式开始,首先在步骤41中,电控单元15查询制动器开动装置是否传送信号。因此,在步骤41中,如果存在对应的信号,则检测到制动踏板37的开动。如果电控单元15检测到制动器的开动,则在步骤48中确定制动操作是否已经开始或者是否出现车辆从加速或连续行驶模式减速。为此,与前述的值进行对照,并以这种方式确认所述信号是否是由制动器开动装置最近传送的。

如果由此确定制动操作开始,则所述方法顺序分支至步骤49。在方法步骤49和50中,在确认制动操作开始之后,液压泵3和液压马达4分别沿传输速度和吸收量减小的方向进行调节。从液压泵传输速度VgP,0的初始调节开始,液压泵3被调节至减小的值VgP,1,VgP,1成比例于制动传输速度VgP,Br与VgP,max的比:

VgP,1=VgP,BrVgP,max·VgP,0

与此同时,液压马达4被调节至减小的吸收量VgM,l。在这种情况下,所述减小的吸收量VgM,l选择为,使流体静力学驱动器1的传动比保持不变。从初始的吸收量VgM,0开始,液压马达4因而根据以下关系被调节至新的吸收量VgM,1

VgM,1=VgP,1VgP,0·VgM,0

调节液压泵3的传输速度和液压马达4的吸收量是方法顺序中的一个完整的部分,其中方法步骤41和48也被重复执行。因此,在液压马达4和液压泵3已被分别设置至其减小的传输速度VgP,1和吸收量VgM,1之后,重复查询制动器开动装置是否已经开动。如果仍然需要减速,则开动装置因而被连续开动,使得当在步骤48中进行下一次查询时确认不存在制动开始。

这样,形成了连续的制动操作,而且在步骤51中,根据制动器开动装置的开动将液压马达的吸收量而调节至更新的吸收量。在这种情况下,调节程度取决于制动器开动装置的开动。

然后在步骤52中,查看在液压马达4的更新的吸收量VgP的情况下,液压下滑是否已经达到极限值,液压泵可从该极限值经过可能的时间斜率而旋转至零,从而允许车辆减速至停车。

如果确认的下滑低于极限值,则在步骤53中,液压泵3的传输速度沿消失传输速度方向的斜率进行调节。

另一方面,如果在步骤52中确认已经达到下滑极限,则不调节液压泵3的传输速度,则存在根据箭头47的转至所述方法顺序中的开始点的分支。

在制动操作中,方法步骤51、52以及可能的53连续地重复。在制动操作的末期,当最新查询到制动器开动装置是否开动时,在步骤41中确认使用者不再开动所述开动装置。因此,液压泵3的传输速度VgP沿步骤54中的斜率被调节回到默认值。与此同时或者与此间隔一段时间,液压马达4的吸收量VgM也沿一斜率被调节至步骤55中的默认值。在这种情况下,所述默认值对应于适合于新的驱动状态的驱动器1的传动比。

在如图3所示的优选的方法顺序中,不需要液压马达4的零转动。因此,对于根据本发明第二示例用于实现所述方法顺序的驱动器而言,还有可能使用不可调节至消失吸收量的马达。

本发明并不仅限于所显示的实施例。相反地,在不背离本发明的思路的情况下,还有可能进行各种选项的组合和修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号