首页> 中国专利> 生物传感器、生物传感器芯片以及生物传感器装置

生物传感器、生物传感器芯片以及生物传感器装置

摘要

生物传感器包含:作用极(101)、与作用极(101)对置的对置极(102)、通过布线与作用极(101)连接的作用极端子(103)及作用极参照端子(10),以及通过布线与对置极(102)连接的对置极端子(104)。通过采取至少三电极构造,可以不受作用极侧的布线电阻影响地进行目标物质的测量。

著录项

  • 公开/公告号CN101255455A

    专利类型发明专利

  • 公开/公告日2008-09-03

    原文格式PDF

  • 申请/专利权人 松下电器产业株式会社;

    申请/专利号CN200810091488.8

  • 发明设计人 上野博也;中塚淳二;

    申请日2003-06-16

  • 分类号C12Q1/00(20060101);C12M1/00(20060101);G01N27/327(20060101);G01N27/416(20060101);

  • 代理机构11245 北京纪凯知识产权代理有限公司;

  • 代理人刘春成

  • 地址 日本大阪府

  • 入库时间 2023-12-17 20:36:43

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-07-04

    专利权有效期届满 IPC(主分类):C12Q 1/00 专利号:ZL2008100914888 申请日:20030616 授权公告日:20120725

    专利权的终止

  • 2018-09-28

    专利权人的姓名或者名称、地址的变更 IPC(主分类):C12Q1/00 变更前: 变更后: 申请日:20030616

    专利权人的姓名或者名称、地址的变更

  • 2015-05-06

    专利权的转移 IPC(主分类):C12Q1/00 变更前: 变更后: 登记生效日:20150414 申请日:20030616

    专利申请权、专利权的转移

  • 2014-06-18

    专利权的转移 IPC(主分类):C12Q1/00 变更前: 变更后: 登记生效日:20140520 申请日:20030616

    专利申请权、专利权的转移

  • 2012-07-25

    授权

    授权

  • 2008-10-29

    实质审查的生效

    实质审查的生效

  • 2008-09-03

    公开

    公开

查看全部

说明书

本申请是2003年6月16日提出的申请号为03801901.9的同名申请的分案申请。

技术领域

本发明涉及用于电子方式检测低(聚)核苷酸,抗原,酶,肽,抗体,DNA片段,RNA片段,葡萄糖,乳酸以及胆固醇等生物物质的结合反应的生物传感器以及生物传感器装置。

背景技术

近年来,使用一次性使用样片的生物敏感测量器年年增长,尤其是期待着简单且短时间测量以及分析血液、血桨,尿以及唾液等的生物体液中特定成分,或者某细胞在某时间点制造的全部蛋白质,即,蛋白质。将来,期待基于一次性使用的DNA芯片的基因诊断,进行根据个人的SNP(“Single Nucleotido Polymorphism,单核苷酸同质多晶现象”的简略)信息的治疗或投药的专用医疗。

以下,作为传统例,对特愿平11-509644号记载的血液样品中的葡萄糖量,即血糖值检测中使用的生物传感器装置加以说明。在本说明书中所谓「生物传感器」指的是包含生物物质检测部的可一次性使用的部分,所谓「生物传感器芯片」指的是在基板上载置有生物传感器以及测量电路等的可一次性使用的部分。此外,所谓「生物传感器装置」指的是在生物传感器或生物传感器芯片上加上分析电路其它部分的装置整体。

图45是示出传统的生物传感器构造的平面图。在同一图上示出的生物传感器1122具有作用极(阳极)1101和与作用极1101对置的对置极(阴极)1102,在作用极1101以及对置极1102上涂布由与被测量成分对应的酶、介质等形成的反应试剂(未图示)。作用极1101经具有布线电阻Rp1的导电性布线而导向作用极端子1103。同样地,对置极1102经具有布线电阻Rm1的导电性布线而引导至对置极端子1104。

图43是示出传统的生物传感器装置一部分的电路图。如同一图所示,传统的生物传感器装置具有把图45所示的生物传感器1122的作用极端子1103和对置极端子1104与测量电路1123连接的构成。测量电路1123具有例如基准电压源1117、和对置极电压施加部1106、具有电流计的作用极电压施加部1105、和信号处理电路1121。在传统的生物传感器装置中由基准电压源1117产生的作用极基准电压Vpr1通过作用极电压施加部1105进行阻抗变换后,从作用极电压施加部1105把作用极端子电压Vp1供给至作用极端子1103。这时下式成立。

Vp1=Vpr1                    (1)

在这里,式(1)中的Vp1、Vpr1示出电位或电压的值。对于以下的Vm1、Vmr也是同样的。

此外,由基准电压源1117产生的对置极基准电压Vmr1通过对置极电压施加部1106进行阻抗变换后,从对置极电压施加部1106对对置极端子1104供给对置极端子电压Vm1。这时下式成立。

Vm1=Vmr1                    (2)

向作用极端子1103流出的电流值通过作用极电压施加部1105测定,示出其结果的作用极电流量信号s1120供给至信号处理电路1121。在传统的生物传感器装置中,根据在这里所测量的电流量,换算被测量成分的浓度并进行结果显示等。这时如果令作用极端子1103和对置极端子1104之间电极施加电压为Vf1,则下式(3)成立。

Vf1=Vpr1-Vmr1               (3)

令作用极1101和对置极1102之间的传感器施加电压为Vf。此外,血液样品一旦与生物传感器1122接触,则通过在作用极1101以及对置电极1102内发生对应于葡萄糖量的电荷,在电极之间流过电流。在这里,如果令在作用极1101侧流过的电流为If1,在对置极1102侧流过的电流为If2,则下式成立:

If1=If2                     (4)

通过由测量电路1123对该电流If1进行的测量用于对葡萄糖量,即血糖值进行测量。

图44是示出包含作用极电压施加部1105和对置极电压施加部1106具体电路构成例的传统的生物传感器装置的电路图。如同一图所示,作用极电压施加部1105是使运算放大器的反馈电阻Rf进行负反馈的电路构成,对置极电压施加部1106是通过使运算放大器作成Nu11放大器构成,即缓冲电路构成,来实现上述功能。

图46是示出在图44所示的传统生物传感器装置中生物传感器芯片1124构造的平面图。在本例中,在同一基板上只形成一对生物传感器1122和测量电路1123。

在图43所示的传统的生物传感器装置中,在生物传感器1122测量血糖值之际,通过布线电阻Rp1在作用极侧的导电性布线和布线电阻Rm1在对置极侧的导电性布线,对于电极施加电压Vf1以及作为作用极电压Vp和对置极电压Vm之电压差的传感器施加电压Vf,下式成立。

Vf=Vf1-(Rp1×If1+Rm1×If2)        (5)

对作用极1101侧流过的电流If1和对置极1102侧流过的电流If2通过基耳霍夫定律,下式成立。

If1=If2                           (6)

把式(3)和式(6)代入式(5),加以整理,成为下式。

Vf=(Vpr1-Vmr1)-(Rp1+Rm1)×If1     (7)

因而,可以看到通过测量电路1123供给至生物传感器1122的电极施加电压(Vpr1-Vmr1)只下降电位降(Rp1+Rm1)×If1,成为传感器施加电压Vf。

如上述所示,根据传统的生物传感器装置,可以简便地测量血液中的葡萄糖量。

解决课题

在这里,通过由反应试剂产生的电荷所引起的电流If1,通过葡萄糖量Q和传感器施加电压Vf成为下式。

If1=f{Q,Vf}                      (8)

因而,如果把式(4)代入式(3),则有:

If1=f{Q,(Vpr1-Vmr1)-(Rp1+Rm1)×If1}    (9)

即:由于通过作用极1101的导电性布线的布线电阻Rp1和对置极1102的导电性布线的布线电阻Rm1产生电位下降,所以对电流If1产生误差,最终地存在所谓对通过生物传感器测量的血糖值产生误差的不良情况。

历来,为了解决该不良情况,作为导电性布线使用了铂(Pt),金(Au),银(Ag)等低电阻贵金属材料,然而却产生了使生物传感器1122成为高价格的新的不合适情况。由于生物传感器部分基本上是一次性使用的,所以要求尽可能低价格。因此,强烈要求新的手段来降低布线电阻。

此外,在把生物传感器装置形成为生物传感器芯片1124的情况下,对导电性布线使用微细加工技术。考虑到将来生物传感器芯片的进一步的微细化,在该情况下,布线电阻成为更高的电阻而产生大的误差,由此,生物传感器装置的测量精度会显著降低。

本发明的目的是谋求解决上述传统技术的不合适情况,提供可不受导电性布线的布线电阻影响地进行测量的生物传感器以及生物传感器装置。

发明内容

本发明的生物传感器包含测量时与被测定流体接触的作用极;测量时与上述被测定流体接触,空出用于流过上述被测定流体的间隔,与上述作用极对置的对置极;与上述作用极连接的作用极端子;与上述对置极连接的对置极端子;以及与上述作用极和上述对置极任一方或双方连接、在测量时实际上没有电流流过的参照端子。

因为通过该构成,通过设置参照端子,不受在作用极和作用极端子之间或者对置极和对置极端子之间电阻影响地进行被测定流体的测量,所以可以实现能够高精度测量的生物传感器。

通过上述作用极以及上述对置极中至少一方上使上述被测定流体中包含的物质状态改变的生物物质或微生物固定化,使电检测例如由酶引起的触媒反应,抗原抗体反应,遗传因子之间的结合反应等导致的被测定流体的变化成为可能。据此,与使用萤光的测量比较,使更加详细的测量成为可能。

上述参照端子通过只与上述作用极或上述对置极的任一方连接,与在作用极以及对置极双方上设置参照端子的情况相比,可以通过少的构成部件来进行高精度的测量。因此,这种情况下的生物传感器在要求削减造价或小面积化的情况下是尤其有效的。

通过还设置连接上述作用极和上述作用极端子的第1布线;连接上述作用极或上述对置极和上述参照端子的第2布线;和连接上述对置极和上述对置极端子的第3布线,对这些布线形状进行加工,可以实现高精度的测量。

上述参照端子通过包含与上述作用极连接的作用极参照端子和与上述对置极连接的对置极参照端子,与只在作用极或对置极一方上设置参照端子的情况相比,成为可以进行高精度的测量。

还包含连接上述作用极和上述作用极端子的第4布线;连接上述作用极和上述作用极参照端子的第5布线;连接上述对置极和上述对置极参照端子的第6布线;以及连接上述对置极和上述对置极端子的第7布线,上述第4布线、上述第5布线、上述第6布线、以及上述第7布线中的至少2条布线设置在相互各异的布线层内,而且通过平面上看,至少一部分重叠地设置,由此,与全部布线在同一布线层内设置的情况相比,可以减少电路面积。

通过上述第1布线和上述第2布线设置在相互各异的布线层内,通过使两布线重叠地配置等,可以实现减少电路面积。

即使在上述第2布线和上述第3布线设置在相互各异的布线层内的情况下,也可以实现电路面积的减少。

上述作用极,上述对置极,上述参照端子,上述作用极端子,上述对置极端子,上述第1布线,上述第2布线以及上述第3布线设置在基板上,因为上述作用极端子或上述对置极端子中的任一方设置在上述基板背面上,从而更拓宽布线面积,所以可以使电阻接近于理想值的OΩ。

上述作用极端子和上述对置极端子也可以设置在相互各异的布线层内。

上述第3布线也可以在遍及多个布线层内设置。

在参照端子只与作用极或对置极的任一方连接时,上述对置极大体是呈圆形,上述作用极内周的一部分与上述对置极的距离大体是恒定的圆周形,由此,除了可以使被测定流体的反应均匀之外,因为加在第1以及对置极上的电场变为均匀,所以可以进一步提高测量精度。

通过上述作用极大体是呈圆形,上述对置极内周的一部分与上述作用极的距离大体是恒定的圆周形,由此,除了也可以使被测定流体的反应均匀之外,因为加在第1以及对置极上的电场变为均匀,所以也可以进一步提高测量精度。

设置多个上述作用极,与上述作用极分别对置的上述对置极彼此之间一体化,由此,因为减少了电极数,所以可以减少制造工序,可以实现造价的降低。此外,因为可以增大与对置极端子连接的布线的截面积,所以可以降低对置极端子侧的布线电阻。

设置多个上述对置极,与上述作用极各自对置的上述作用极彼此之间一体化,由此,也可由此减少电极数,从而也可以实现造价的降低。

上述第3布线的截面积比上述第1布线的截面积还大,从而可以使第3布线的电阻与作为理想值的OΩ更加接近。

本发明的生物传感器芯片包含,在基板上设置的生物传感器;以及与上述生物传感器连接,在基板上设置的测量电路,其中,生物传感器具有:在测量时与被测定流体接触的作用极;在测量时与上述被测定流体接触,空出用于流过上述被测定流体的间隔,与上述作用极对置的对置极;用于保持上述被测定流体的传感器部;与上述作用极连接的作用极端子;以及与上述对置极连接的对置极端子;与上述作用极和上述对置极任一方或双方连接,在测量时实质上没有电流流过的参照端子。

通过该构成,因为参照端子与作用极以及对置极中的一方或双方连接,所以不通过在作用极和作用极端子之间或对置极和对置极端子之间的电阻值,即可以测量被测定流体中的测量对象物质。因此,使高精度测量成为可能。

在上述作用极以及上述对置极中至少一方,通过使上述被测定流体内包含的物质状态变化的生物物质或微生物固定化,可以实现迅速且详细的测量。

通过使上述参照端子只与上述作用极或上述对置极任一方连接,可以通过少的构成构件使高精度的测量成为可能。

例如,上述参照端子也可与上述作用极连接,上述测量电路也可包括与上述作用极端子连接,具有电流计的作用极电压施加部;与上述参照端子连接的作用极电位参照电路;与上述对置极端子连接的对置极电压施加部;用于把基准电压分别供给至上述作用极电位参照电路以及上述对置极电压施加部的基准电压源;以及用于测量时根据在上述作用极端子内流过的电流量对从上述作用极电压施加部输出的电流量信号进行处理的信号处理电路。

在这种情况下,优选为上述作用极电位参照电路产生信号,以便在测量时使上述参照端子上施加的电压与供给至上述作用极电位参照电路的基准电压大体相等,从而进行精度良好的测量。

上述参照端子与上述对置极连接,上述测量电路也可以具有以下部件,即:与上述作用极端子连接的作用极电压施加部;与上述对置极端子连接,具有电流计的对置极电压施加部;与上述参照端子连接的对置极电位参照电路;用于把基准电压分别供给至上述对置极电位参照电路以及上述作用极电压施加部的基准电压源;用于在测量时根据在上述对置极端子内流过的电流量对从上述对置极电压施加部输出的电流量信号进行处理的信号处理电路。

这种情况下,优选上述对置极电位参照电路产生信号,以便在测量时,使上述参照端子上所加的电压与供给至上述对置极电位参照电路的基准电压大体相等。

上述参照端子与上述作用极连接,上述测量电路具有以下部件,即:与上述作用极端子以及上述参照端子连接,具有电流计的作用极电压施加部;与上述对置极端子连接的对置极电压施加部;用于把基准电压分别供给至上述作用极电压施加部以及加上述对置极电压施加部的基准电压源;用于在测量时,根据在上述作用极端子流过的电流量,对从上述作用极电压施加部输出的电流量信号进行处理的信号处理电路,由此,即使不设置作用极电位参照电路也使对测量对象物质进行测量成为可能。

上述参照端子与上述对置极连接,上述测量电路具有以下部件,即:与上述作用极端子连接的作用极电压施加部;与上述对置极端子以及上述参照端子连接,具有电流计的对置极电压施加部;用于把基准电压分别供给至上述对置极电压施加部以及上述作用极电压施加部的基准电压源;用于测量时,根据在上述对置极端子内流过的电流量,对从上述加对置极电压施加部输出的电流量信号进行处理的信号处理电路,由此,即使不设置对置极电位参考电路也使对测量对象物质进行测量成为可能。

通过包含与上述作用极连接的作用极参照端子,和与上述对置极连接的对置极参照端子,与只设置作用极参照端子或只设置对置极参照端子的情况相比,可以提高测量精度。

上述测量电路也可以具有以下部件,即:与上述作用极端子以及上述作用极参照端子连接的作用极电压施加部;与上述对置极端子以及上述对置极参照端子连接的对置极电压施加部;用于把基准电压分别供给至上述对置极电压施加部以及上述作用极电压施加部的基准电压源;测量时,用于对根据在上述作用极端子内流过的电流量,从上述作用极电压施加部输出的第1电流量信号和根据在上述对置极端子内流过的电流量从上述对置极电压施加部输出的第2电流量信号中至少一方进行处理的信号处理电路。

在这种情况下,尤其是因为上述信号处理电路通过对上述第1电流量信号和上述第2电流量信号双方进行处理,可以用2个电流量信号测量,所以可以进一步提高测量精度。

通过使设置有上述生物传感器的基板和设置有上述测量电路的基板是同一基板,从而可以容易制造。

上述生物传感器芯片还有公共基板,通过将设置有上述生物传感器的基板和设置有上述测量电路的基板载置在上述公共基板上,例如测量电路的基板与在第1以及对置极上固定化的生物物质或试剂等反应的情况,或者测量电路布线和生物传感器布线不能公共化的情况下,也可以制造生物传感器芯片。

通过对设置有上述生物传感器的基板和设置有上述测量电路的基板进行层叠,除可以使生物传感器芯片更加小面积化之外,也可以实现降低造价。

在同一基板上设置多个上述生物传感器,至少2个上述生物传感器与同一上述测量电路连接,通过在上述各生物传感器的上述作用极端子和上述测量电路之间,在上述参照端子和上述测量电路之间,以及在上述对置极端子和上述测量电路之间还设置用于通、断上述生物传感器和上述测量电路连接的开关,因为可以减少必要的测量电路数,所以可以使芯片面作得更小。

在同一基板上设置多个上述生物传感器,通过2个上述生物传感器的传感器部相互邻接设置,除可以同时进行多个测量之外,使用极微量的必要的试料就可以解决问题。

本发明的生物传感器装置包含在下部件,即:在测量时与被测定流体接触的作用极;测量时与上述被侧流体接触,空出用于上述被测定流体流过的间隔,与上述作用极对置的对置极,和用于保持上述被测定流体的传感器;与上述作用极连接的作用极端子;与上述对置极连接的对置极端子;具有与上述对置极任一方或双方连接,在测量时没有实质的电流流过的参照端子,在基板上设置的生物传感器;与上述生物传感器连接,在基板上设置的测量电路,通过测量时具有从上述作用极端子和上述对置极端子任一方或双方流过的电流值测量上述被测定流体内包含的被测对象物质浓度的功能,可以比传统方式迅速且高精度进行目标物质的测量。

通过上述参照端子只与上述作用极或上述对置极的任一方连接,实现比传统方式更高精度的测量的同时,与在作用极和对置极双方设置参照端子的情况相比,可以减少部件个数。

上述参照端子包含与上述作用极连接的作用极参照端子,和与上述对置极连接的对置极参照端子,上述测量电路包含以下部件,即:与上述作用极端子以及上述作用极参照端子连接的作用极电压施加部;与上述对置极端子以及上述对置极参照端子连接的对置极电压施加部;用于把基准电压分别供给至上述对置极电压施加部以及上述作用极电压施加部的基准电压源;用于测量时根据在上述作用极端子内流过的电流量对从上述作用极电压施加部输出的第1电流量信号和根据在上述对置极端子内流过的电流量对从上述对置极电压施加部输出的第2电流量信号中至少一方进行处理的信号处理电路,可以不受作用极和作用极端子之间的电阻、对置极和对置极端子之间电阻双方的影响进行测量,所以与参照端子只与作用极或对置极一方连接的情况比较,可以提高测量精度。

为了正确测量,优选在测量时使上述作用极参照端子上所加的电压与供给至上述作用极电压施加部的基准电压大体相等,在上述对置极参照端子上加的电压与供给至上述对置极电压施加部的基准电压大体相等。

通过还包含与上述测量电路连接,用于对从上述测量电路输出的信号进行分析的电路,使正确测量成为可能。

上述生物传感器和上述测量电路设置在同一芯片上,通过使上述芯片可以更换,可以防止试料间的污染,可以简便测量。

上述测量电路接受上述第1电流量信号以及上述第2电流量信号,通过还包含把表示在上述作用极和上述对置极之间流过电流量的第3电流量信号输出到上述信号处理电路的电流量信号生成部,可以使在后级设置的信号处理电路的构成简略化,从而使装置小型化成为可能。

上述参照端子与上述使用极连接,上述测量电路也可以具有如下部件,即:与上述作用极端子连接,具有电流计的作用极电压施加部;与上述参照端子连接的作用极电位参照电路;与上述对置极端子连接的对置极电压施加部;用于把基准电压分别供给至上述作用极电位参照电路以及上述对置极电压施加部的基准电压源;用于测量时根据在上述作用极端子上流过的电流量对从上述作用极电压施加部输出的电流量信号进行处理的信号处理电路。

为了精度良好地进行测量,优选使上述作用极电位参照电路产生信号,以便在测量时使上述参照端子上所加电压与供给至上述作用极电位参照电路的基准电压大体相等。

上述参照端子与上述对置极连接,上述测量电路也可以具有以下部件,即:与上述作用极端子连接的作用极电压施加部;与上述对置极端子连接,具有电流计的对置极电压施加部;与上述参照端子连接的的对置极电位参照电路,和用于分别把基准电压供给至上述对置极电位参照电路以及上述作用极电压施加部的基准电压源;用于对测量时根据在上述对置极端子流过的电流量对从上述对置极电压施加部输出的电流量信号进行处理的信号处理电路。

在这种情况下,为了精度良好地进行测量,优选使上述对置极电位参照电路产生信号,以便在测量时使上述参照端子上所加电压与供给至上述对置电极参照电路的基准电压大体相等。

上述参照端子与上述作用极连接,上述测量电路也可以具有以下部件,即:与上述作用极端子以及上述参照端子连接,具有电流计的作用极电压施加部;与上述对置极端子连接的对置极电压施加部;用于把基准电压分别供给至上述作用极电压施加部以及上述对置极电压施加部的基准电压源;用于对测量时根据在上述作用极端子流过的电流量对从上述作用极电压施加部输出的电流量信号进行处理的信号处理电路。

上述参照端子与上述对置极连接,上述测量电路也可以具有以下部件,即:与上述作用极端子连接的作用极电压施加部;与上述对置极端子以及上述参照端子连接,具有电流计的对置极电压施加部;用于把基准电压分别供给至上述对置极电压施加部以及上述作用极电压施加部的基准电压源;用于对测量时根据在上述对置极端子流过的电流量对从上述对置极电压施加部输出的电流量信号进行处理的信号处理电路。

由于装置整体一次性使用是可能的,从而可以更加简便地进行测量。

附图说明

图1是示出本发明第1实施方式的生物传感器一部分的电路图。

图2是示出包含作用极电压施加部和对置极电压施加部的具体电路构成的、第1实施方式的生物传感器装置一部分的电路图。

图3是示出本发明的第6实施方式的生物传感器装置一部分的电路图。

图4是示出包含作用极电压施加部以及对置极电压施加部的具体电路构成的、第6实施方式的生物传感器装置一部分的电路图。

图5是示出本发明第7实施方式的生物传感器装置一部分的电路图。

图6是示出包含作用极电压施加部以及对置极电压施加部的具体电路构成的、第7实施方式的生物传感器装置一部分的电路图。

图7是示出本发明第8实施方式的生物传感器装置一部分的电路图。

图8是示出包含作用极侧电位参照电压源以及带对置极侧电位参照电流计的电压源具体构成的第8实施方式的生物传感器一部分的电路图。

图9是示出第1实施方式的生物传感器的平面图。

图10是示出使导电性布线多层化时第1实施方式的生物传感器的图。

图11是示出本发明第2实施方式的生物传感器的平面图及透视图。

图12是示出本发明第3实施方式的生物传感器的平面图及透视图。

图13是示出本发明第4实施方式的生物传感器的平面图及透视图。

图14是示出本发明第5实施方式的生物传感器的平面图及透视图。

图15是示出本发明第9实施方式的生物传感器芯片的平面图。

图16是示出本发明第9实施方式的生物传感器芯片第1变形例的平面图。

图17是示出本发明第9实施方式的生物传感器芯片第2变形例的平面图。

图18是示出本发明第9实施方式的生物传感器芯片第3变形例的平面图。

图19是示出本发明第10实施方式的生物传感器芯片的平面图。

图20是第10实施方式的生物传感器芯片的截面图。

图21是示出本发明第11实施方式的生物传感器的平面图。

图22是示出本发明第12实施方式的生物传感器的平面图及透视图。

图23是示出本发明第13实施方式的生物传感器芯片的平面图。

图24是示出本发明第14实施方式的生物传感器芯片构成的电路图。

图25是示出本发明第14实施方式的生物传感器芯片的平面图。

图26是示出本发明第15实施方式的生物传感器芯片的平面图。

图27是示出本发明第16实施方式的生物传感器装置的电路构成图。

图28是示出本发明第16实施方式的生物传感器装置的电路构成图。

图29是示出在第16实施方式的生物传感器装置中作用极电压施加部以及对置极电压施加部的电路图。

图30是示出本发明第17实施方式的生物传感器装置的电路构成图。

图31是示出本发明第18实施方式的生物传感器装置的电路构成图。

图32是本发明第19实施方式的生物传感器的平面图。

图33是示出本发明第20实施方式的生物传感器的平面图。

图34是示出本发明第21实施方式的生物传感器的平面图。

图35是示出本发明第22实施方式的生物传感器的平面图。

图36是示出本发明第23实施方式的生物传感器芯片的平面图。

图37是示出本发明第24实施方式的生物传感器芯片的平面图。

图38是示出本发明第25实施方式的生物传感器芯片的平面图。

图39是示出本发明第26实施方式的生物传感器芯片的平面图。

图40是示出第26实施方式的测量电路模块的电路构成图。

图41是示出本发明第27实施方式的生物传感器芯片的平面图。

图42是示出本发明第28实施方式的生物传感器芯片的构造图。

图43是示出传统的生物传感器装置一部分的电路图。

图44是示出包含作用极电压施加部以及对置极电压施加部的具体电路构成例的传统生物传感器一部分的电路图。

图45是示出传统的生物传感器构造的平面图。

图46是示出图44所示的传统的生物传感器装置中生物传感器芯片构造的平面图。

具体实施方式

以下,对本发明实施例加以说明。在各实施例,在公共的构件上附加同一符号,省略其详细说明。

(第1实施方式)

图1是示出本发明第1实施方式的生物传感器装置一部分的电路图,图9是示出第1实施方式的生物传感器的平面图。

如第9图所示,本实施方式的生物传感器15具有作用极101,与作用极101对置的对置极102,共同与作用极101连接的作用极端子103以及作用极参照端子10,与对置极102连接的对置极端子104。在作用极101和作用极端子103以及作用极参照端子10之间,以及在对置极102和对置极端子104之间通过Al(铝)或Cu(铜)等较便宜的金属构成的导电性布线连接。由于对置极102经具有足够的截面积的导电性布线与对置极端子104连接,所以对置极侧的布线电阻Rm看成大体OΩ。因此,在对置极102和对置极端子104之间的导电线布线的截面积比在作用极101和作用极端子103之间的导电性布线的截面积还大。

包含葡萄糖等被测物的样品从外部导入包含作用极101以及对置极102的反应部,进行测量。例如,在测葡萄糖时,一旦血液样品与在作用极101以及对置极102上固定化的葡萄糖氧化酶接触,则通过化学反应生成过氧化氢,产生电子。这样一来,在电极间流过电流,通过测量该电流,测量葡萄糖量。葡萄糖氧化酶也不一定必须在两极上固定化,也可以在作用极101或对置极102的任一方上固定化。

其次,图1所示的本实施方式的生物传感器装置包含上述的生物传感器15,作用极参照端子10,与作用极端子103以及对置极端子104连接的测量电路16。

测量电路16具有与作用极参照端子10连接的作用极电位参照电路8,与作用极端子103连接、具有电流计的作用极电压施加部105,与对置极端子104连接的对置极电压施加部106,用于把作用极基准电压Vpr1以及对置极基准电压Vmr1分别供给至作用极电位参照电路8和对置极电压施加部106的基准电压源117,与作用极电压施加部105连接的信号处理电路121。

图2是示出包含作用极电压施加部105和对置极电压施加部106具体的电路构成的本实施方式的生物传感器装置的电路图。如同一图所示,作用极电压施加部105是使运算放大器反馈电阻Rf进行负电馈的电路构成,对置极电压施加部106通过使运算放大器作成Nu11放大器构成,即作成缓冲放大电路构成,实现上述的功能。

本实施方式的生物传感器以及生物传感装置的特征为,把与作用极101连接的电极分为作用极端子103和作用极参照端子10两个,以下说明其效果。

首先,在本实施方式的生物传感器装置中,由基准电压源117产生的对置极电压Vmr1通过对置极电压施加部106进行阻抗变换后,从对置极电压施加部106把所加电压Vm1供给至对置极端子104。这时下式成立。

Vm1=Vmr1                    (10)

如果把由基准电压源117产生的作用极基准电压Vpr1和从作用极参照端子10来的作用极参照端子电压Vp2输入作用极电位参照电路8,则作用极电位参照电路8产生作用极控制信号s13,以便使其差电位成为OV。作为作用极控制信号s13的电压的作用极控制信号电压为Vpr2。这时,下式的关系成立。

Vp2=Vpr1                        (11)

Vp1=Vpr2                        (12)

作用极控制信号电压Vpr2通过作用极电压施加部105进行阻抗变换后,从作用极电压施加部105把作用极控制信号电压Vpr2供给至作用极端子103。

其次,在图1,令作用极101和作用极参照端子10之间的导电性布线的布线电阻为Rp2,流过布线的作用极参照端子电流为Ip2。

在这里,作用极电位参照电路8的作用极参照端子10侧的输入成为高输入阻抗,在作用极参照端子10内流过的电流成为下式。

Ip2=O                           (13)

由此,作用极参照端子电压Vp2和作用极电压Vp满足下式。

Vp2=Vp                          (14)

因而,通过式(10),(11),(13),(14),对于传感器施加电压Vf,下式成立。

Vf=Vp-Vm

  =Vp2-(Vm1+If2·Rm1)

在这里,由Rm1=OΩ,

Vf=Vp2-Vm1

  =Vpr1-Vmr1

∴Vf=Vpr1-Vmr1                  (15)

即:对传感器施加电压Vf常时施加一定电压。

因而,在本实施方式的传感器装置中,如果把式(15)代入式(8),则得下式。

If1=f{Q,(Vpr1-Vmr1)}

∴If1=f(Q)                      (16)

因而,完全不发生由作用极101的导电性布线的布线电阻Rp1产生的影响,在最终的生物传感器装置测量的血糖值内完全不产生误差。在这里,通过作用极电位参照电路8和作用极电压施加部105,如下式所示地控制作用极端子电压Vp1。

Vp1=Vpr2,

∴Vp1=Vpr1+Rp1×If1                    (17)

如以上所示,本实施方式的生物传感器装置通过包含由作用极分岐的作用极端子以及作用极参照端子,和具有与对置极连接的对置极端子的3电极的生物传感器,以及通过包含产生作用极控制信号s13的作用极电位参照电路8,以便使作用极参照电压Vp2和作用极基准电位Vpr1的电位差成为0,从而不受布线电阻影响地进行测量成为可能。因此,与传统的生物传感器装置比较,可以进行高精度测量。

因为测量值不受布线电阻的影响,所以没有必要与传统方式那样在布线中用高价的贵金属,可以实现造价降低。

在本实施方式的生物传感器装置中,通过信号处理电路121处理在作用极电压施加部105流过的电流,算出被测物质的浓度,通过未图示的显示部等进行显示。

在本实施方式的生物传感器,也可以使导电性布线多层化。

图10是示出使导电性布线多层化时的本实施方式的生物传感器的图。在同一图所示的例中,连接作用极101和作用极参照端子10的导电性布线和与作用极端子103连接的导电性布线设置在不同层上,平面上看两导电性布线相互重叠设置。

通过这样的构造,与图9所示的生物传感器比较可以减少面积。通过小面积化,除了在芯片上集成测量多种类物质的生物传感器是有利的之外,也有可能性实现造价降低。例如,通过组合葡萄糖测量用的生物传感器和GOT、GTP等肝功能测量用生物传感器,作成多层化,通过一次采血可以进行其它种类的测量,减轻患者的负担。

布线多层化不仅可以用于作用极也可以用于对置极侧的导电性布线。因为伴随微细化的进展,对置极布线面积变窄,所以使电阻接近0变得困难。因此,通过使对置极布线多层化,对置极侧的导电性布线作成2层以上,可以实质上扩展布线面积,使降低电阻值成为可能。

在现在的生物传感器装置中广泛销售的是使葡萄糖氧化酶等在对置极以及作用极上固定化的葡萄糖测量用装置,而通过改变在电极上固定化的物质,使测量与该物质结合的物质,或反应的物质,或通过触媒反应分解以及合成的物质成为可能。例如通过在电极上固定一条链DNA,可以检测与该DNA作成对的DNA或者RNA。因为通过使DNA成为2条链,使导电性改变,所以使电检测成为可能。这也可以在疾病检查中利用。例如在艾滋病检查等中,直到产生抗体需要数月时间,通过RNA测量,可以在感染后迅速地检出感染。

此外,也可以使各种酶等的生物物质在电极上固定化,也可以使微生物固定化。例如,通过促进二氧化碳的微生物固定化,也可以测量血液中二氧化碳。在这里所谓生物物质指的是在生物体内包含的蛋白质,氨基酸,遗传因子等其它有机物整体。

因为与利用萤光的比色定量相比,电定量可以把握更加详细的测量值,所以在制定治疗计划方面,可以进行精密地测量的本实施方式的生物传感器装置也是有用的。

在本实施方式的生物传感器中,只有生物传感器15或生物传感器以及测量电路16是一次性使用的,包含显示部或各种机器的装置主体也可以是一次性使用的。

也可以采取在对置极侧上设置对置极参照端子的4端子构造,然而因为本实施方式的生物传感器也可以比4电极构造的部件个数少,所以实现低价格化,此外,也可以容易扩大布线面积。相反,在要求高精度时,4端子构造的生物传感器装置为优选。对此在以后的实施方式中详述。

在本实施方式的生物传感器中,作用极端子和作用极参照端子成为从作用极分岐的形状,然而,与作用极端子连接的导电性布线和与作用极参照端子连接的导电性布线也可以按照共用一部分在中途分岐那样的形状。

(第2实施方式)

图11是示出本发明第2实施方式的生物传感器70的平面图以及透视图。

如同一图所示,本实施方式的生物传感器具有作用极101,与作用极对置的对置极102,与作用极101连接的作用极参照端子10以及作用极端子103,和与对置极102连接的对置极端子104。

本实施方式的生物传感器的特征是,与对置极102连接的对置极端子104从作用极101的形成的面向背面贯通,背面整体成为对置极端子。

根据这样的构造,不改变生物传感器尺寸,可以进一步减少对置极端子侧的布线电阻值Rm1,可以实现高精度的生物传感器。

如以上所示,根据本实施方式的生物传感器具有设置有作用极、作用极参照端子、对置极的3电极构造,通过对置极端子从作用极形成的面向背面贯通,背面整体成为对置极,可以实现高精度测量。

(第3实施方式)

图12是示出本发明第3实施方式的生物传感器的平面图以及透视图。

如同一图所示,本实施方式的生物传感器具有大体圆形的对置极102,作成将对置极102空出一定间隔、包围的同心圆的环状的作用极101,与作用极101连接的作用极参照端子10以及作用极端子103,和与对置极102连接的对置极端子104。对置极端子104贯通形成有作用极101面的背侧,在背面整体上设置。

因为在本实施方式的生物传感器中,作用极101形成为同心圆状,所以可以使酶和被测物质的反应均匀地进行。作用极上的电压变得均匀,可以更加提高测量精度。

与第2实施方式同样,通过在背面整体上设置对置极端子104,可降低对置极上的电阻,提高测量精度。

这样一来,根据本实施方式的生物传感器,与传统相比,可以进行显著高精度的测量。

在本实施方式的生物传感器中,作用极101是同心圆状,但例如通过采取半圆状等,圆周一部分的形态,也可以使加在作用极上电场均匀。

(第4实施方式)

图13是示出本发明第4实施方式的生物传感器的平面图以及透视图。如同一图所示,本实施方式的生物传感器72具有作用极101,与作用极对置那样地设置的对置极102,与作用极101连接、在背面整体上设置的作用极端子103,和与对置极102连接的对置极端子104以及对置极参照端子3。

如本实施方式所示,在对置极侧上设置参照电极,也可以作成3电极构造。即使在这种情况,正如第1实施方式说明的那样,因为导电性布线电阻不影响测量值,使高精度测量成为可能。因此,可以通过低价格金属构成导电性布线,可以实现造价降低。

在图13所示的例,通过作用极端子103在形成有作用极101面的背面整体上形成,可以显著降低作用极侧的电阻值。但也可以不一定在背面设置作用极端子103。

如以上所示,根据本实施方式的生物传感器可以实现高精度测量。因为可以解决由微细化产生的布线电阻问题,所以不随微细化进展而降低测量精度。

(第5实施方式)

图14是示出本发明第5实施方式的生物传感器的平面图以及透视图。如同一图所示,本实施方式的生物传感器73具有大体圆形的作用极101,空出一定间隔、包围作用极101的对置极102,与作用极101连接、在基板背面设置的作用极参照端子10以及作用极端子103,和遍及基板上面整体设置的对置极端子104。

根据本实施方式的生物传感器73,因为作用极101以及包围作用极101的对置极102的内周成为同心圆状,所以使酶和被测物的反应均匀进行成为可能。可以使电极上所加电场均匀,可以更加提高测量精度。

此外,因为对置极端子104设置在基板上面整体上,所以可以降低对置极侧电阻Rm1到非常低值。因此,本实施方式的生物传感器的测量精度上升。

这样一来,通过使对置极与作用极内周作成同心圆状,使对置极端子104设置在基板上面上,可以实现可能高精度测量的生物传感器。

(第6实施方式)

图3是示出本发明第6实施方式的生物传感器装置一部分的电路图,图4是示出包含作用极电压施加部29以及对置极电压施加部28具体构成的本实施方式的生物传感器装置一部分的电路图。

如图3所示,本实施方式的生物传感器装置包含生物传感器15,与生物传感器15连接的测量电路16。

生物传感器15具有作用极101,与作用极101对置的对置极102,与作用极101连接的作用极参照端子10以及作用极端子103,和与对置极102连接的对置极端子104。作用极101和作用极参照端子10、以及作用极端子103之间分别通过Cu或A1等构成的导电性布线连接。

测量电路16具有与作用极参照端子10以及作用极端子103连接、具有电流计的作用极电压施加部29,与对置极端子104连接的对置极电压施加部28,对作用极电压施加部29供给作用极基准电压Vpr1,分别对对置极电压施加部28供给对置极基准电压Vmr1的基准电压源117,和用于对输入到作用极电压施加部29电流进行处理的信号处理电路121。在这里,作用极电压施加部29是通过特开平11-154833号公报(美国专利第5,986,910号)公开的电压电流变换电路。

在本实施方式的生物传感器装置,由基准电压源117产生的对置极基准电压Vmr1在对置极电压施加部28进行阻抗变换之后,施加从对置极电压施加部28来的对置极端子电压Vm1。这时下式成立。

Vm1=Vmr1                     (18)

作用极基准电压Vpr1和生物传感器15的作用极参照端子10的作用极参照端子电压Vp2输入至作用极电压施加部29,把作用极控制信号电压Vp1供给至按照其差电压大体成为0V那样的作用极端子103。这时,下式成立。

Vp2=Vpr1                     (19)

流出到作用极端子103的电流值通过作用极电压施加部29测量,作为其结果的作用极电流量信号s120供给至信号处理电路121。根据其测量的电流量对被测成分的浓度进行换算的结果显示等。

因为作用极电压施加部29的作用极参照端子10输入是高输入阻抗,流入参照电极的电流成为下式。

Ip2=0                (20)

因而,作用极参照端子电压Vp2和作用极电压Vp满足下式。

Vp2=Vp               (21)

因此,通过式(18),(19),(20),(21),对传感器施加电压Vf,下式成立。

Vf=Vp-Vm

  =Vp2-(Vm1+If2·Rm1)

在这里,通过Rm1=OΩ,有

Vf=Vp2-Vm1

  =Vpr1-Vmr1

∴Vf=Vpr1-Vmr1       (22)

即:对于传感器上所加电压Vf常时施加一定电压。因此,在本实施方式6,把式(22)代入式(8),成为下式。

If1=f{Q,(Vpr1-Vmr1)}

∴If1=f(Q)           (23)

因而,完全不发生因连接作用极101和作用极端子103的导电性布线的布线电阻Rp1产生的影响,在通过生物传感器装置测量的例如血糖值中不包含误差。

在这里,作用极端子电压Vp1通过作用极电压施加部29如下式所示地进行控制。

Vp1=Vpr1+Rp1×If1    (24)

本实施方式的生物传感器装置与第1实施方式的生物传感器装置不同点在于包含了与作用极参照端子10以及作用极端子103双方连接的作用极电压施加部29。因为通过该构造,可以节省用于稳定电路的电容器,所以可以减少电路整体的面积。

这样一来,即使作用极电压施加部29是也兼顾了作用极电位参照电路的构造,也可以实现不受作用极侧布线电阻影响的高精度的生物传感器。

如图4所示,作为作用极电压施加部29的具体例,示出具有作用极参照端子10与负侧的输入连接,而基准电压源117与正侧输入连接,输出与作用极端子103连接的运算放大器的例,然而,也可以为除此以外的构成。

(第7实施方式)

图5是示出本发明第7实施方式的生物传感器装置一部分的电路图,图6是示出包含作用极电压施加部19以及对置极电压施加部17具体构成的本实施方式的生物传感器装置一部分的电路图。

如图5所示,本实施方式的生物传感器装置包含与生物传感器72和与生物传感器72连接的测量电路16。

生物传感器72具有作用极101,与作用极101对置设置的对置极102,与作用极101连接的作用极端子103,和与对置极102连接的对置极端子104以及对置极参照端子3。因为连接作用极101和作用极端子103的导电性布线的截面积十分大,所以布线电阻可以大体取作0。该生物传感器72是与第4实施方式的生物传感器相同,具有对置极参照端子3的构造。

测量电路16具有与作用极端子103连接的作用极电压施加部19,与对置极端子104连接、具有电流计的对置极电压施加部17,与对置极参照电极3连接的对置极电位参照电路1,和向作用极电压施加部19供给作用极基准电压Vpr1,向对置极电位参照电路1上供给对置极基准电压Vmr1的基准电压源117,和用于根据输入的电流对从对置极电压施加部17输出的对置极电流量信号s18进行处理的信号处理电路121。

在本实施方式的生物传感器装置中,由基准电压源117产生的作用极基准电压Vpr1通过作用极电压施加部19进行阻抗变换之后,从作用极电压施加部19把作用极端子电压Vp1供给至作用极端子103。这时,下式成立。

Vp1=Vpr1                (25)

如果把由基准电压源117产生的对置极基准电压Vmr和作用极参照端子电压Vm2输入到对置极电位参照电路1,则对置极电位参照电路1产生使其差电压成为OV的对置极控制信号s6。该对置极控制信号s6的电压(作用极控制信号电压)是Vmr2。这时,下式成立。

Vm2=Vmr1                    (26)

Vm1=Vmr2                    (27)

在图5,向对置极端子104流出的电流通过对置极电压施加部17进行测量,其结果以对置极电流量信号s18形式供给至信号处理电路121。而且,根据测量的电流量对被测成分的浓度进行换算的结果显示等。

与上述的第1实施方式同样,对于传感器施加电压Vf,下式成立。

Vf=Vp-Vm

  =Vp1-(Vm2+If1·Rp1)

在这里,通过Rp1=OΩ,

Vf=Vp1-Vm2

  =Vpr1-Vmr1

∴Vf=Vpr1-Vmr1             (28)

因为Vpr1和Vmr1是一定的,所以传感器施加电压Vf一直为一定值。

因而,在本实施方式3,把式(28)代入式(8),得下式。

If2=f{Q,(Vpr1-Vmr1)}

∴If2=f(Q)                 (29)

因此,对置极102侧的导电性布线的布线电阻Rm1不影响在对置极端子104流过的If2,在最终的生物传感器装置测量的血糖值不包含误差。

在这里,对置极端子电压Vm1通过对置极电位参照电路1和对置极电压施加部17如下式所示地进行控制。

Vm1=Vmr2

∴Vm1=Vmr1-Rm1×If2        (30)

如以上所示,可以了解,根据本发明的第7实施方式,即使是在对置极侧上具有对置极端子104和对置极参照电极3的3电极构造,也可以不取决于导电性布线电阻,进行高精度测量。而且,由于与例如设置4个以上电极的情况相比,部件个数少,所以可以实现低价格,高精度的生物传感器装置。

在图6所示的电路具体例,对置极电压施加部17是在运算放大器上使反馈电阻Rg20进行负反馈的电路构成,作用极电压施加部19使运算放大器作成Null放大器的构成,即作成缓冲电路构成。据此,对置极电压施加部17以及作用极电压施加部19发挥上述的功能。对置极电压施加部17以及作用极电压施加部19也可以具有另外的电路构成。

(第8实施方式)

图7是示出本发明第8实施方式的生物传感器装置一部分的电路图,图8是示出包含作用极电压施加部31以及对置极电压施加部30的具体构成的本实施方式的生物传感器装置一部分的电路图。

如图7所示地,本实施方式的生物传感器装置包含生物传感器72和与生物传感器72连接的测量电路16。

其中,生物传感器72的构成是与第7实施方式同样的。

而且,测量电路16具有作用极电压施加部31,与对置极端子104以及对置极参照电极3连接的、具有电流计的对置极电压施加部30,把作用极基准电压Vpr1供给至作用极电压施加部31、把对置极基准电压Vmr1供给至对置极电压施加部30的基准电压源117,和用于对从对置极电压施加部30来的对置极电流量信号s18进行处理的信号处理电路121。

本实施方式的生物传感器装置与第7实施方式的不同点在于,没有对置极电位参照电路1,对置极电压施加部30与对置极端子104和对置极参照电极3双方连接。

在图7所示的本实施方式的生物传感器装置中,对置极基准电压Vmr1和对置极参照电极3的对置极参照电极电压Vm2共同输入对置极电压施加部30,按照使其差电压为OV那样向对置极端子104供给至对置极控制信号电压Vmr2。这时,下式成立。

Vm2=Vmr1                    (31)

作用极基准电压Vpr1通过作用极电压施加部31进行阻抗变换后,从作用极电压施加部31把电压Vp1供给至作用极端子103。这时,下式成立。

Vp1=Vpr1                    (32)

另一方面,流出到对置极端子104的电流通过对置极电压施加部30进行测量,示出测量结果的对置极电流量信号s18供给至信号处理电路12。而且,在装置整体,对被测成分的浓度进行换算的结果显示等。

与前述的第6实施方式同样地,对于传感器施加电压Vf,下式成立。

Vf=Vp-Vm

  =Vp1-(Vm2+If1·Rp1)

在这里,因Rp1=OΩ,

Vf=Vp1-Vm2

  =Vpr1-Vmr1

∴Vf=Vpr1-Vmr1              (33)

即:传感器施加电压Vf应当是一定电压。

因而,如果把式(33)代入式(8),成为下式。

If2=f{Q,(Vpr1-Vmr1)}

∴If2=f(Q)                  (34)

因而,通过生物传感器装置测量的血糖值不受对置极102侧的导电性布线的布线电阻Rm1的影响,不产生误差。

如以上所示,即使在对置极参照电极3和对置极端子104共同地与对置极电压施加部30连接时,也可以实现高精度的测量。

在图8所示的电路具体例中,对置极电压施加部30具有在负侧的输入连接参照电极3,在正侧的输入与作用极基准电压Vmr1连接,输出与作用极端子103连接的运算放大器。这是在特开平11-154833号公报(美国专利第5,986,910)公开的电压电流变换器电路。也可以用除此之外的构成。

(第9实施方式)

以下,对本发明第9实施方式的传感器加以说明。

图15是示出本实施方式的生物传感器芯片的平面图,图16是示出本实施方式的生物传感器芯片第1变形例的平面图,图17是示出本实施方式的生物传感器芯片第2变形例的平面图,图18是示出本实施方式的生物传感器芯片第3变形例的平面图。

如图15所示,本实施方式的生物传感器芯片35具有在同一基板上设置图9所示的第1实施方式的生物传感器和测量电路16的构造。生物传感器或测量电路16用微细加工技术制造,连接作用极101和作用端子103以及作用极参照端子10的导电性布线或连接对置极102和对置极端104的导电性布线作成薄膜化。对置极侧以及作用极侧的导电性布线由例如Al或Cu等较便宜的金属构成。

从装置主体取出本实施方式的生物传感器芯片35成为可能,一次性使用是可能的。

这样一来,通过使生物传感器和测量电路16一体化,1芯片化,实现测量部分小型化的同时,用现存的大量生产技术,使低价格供应该生物传感器芯片成为可能。

在用微细加工技术形成时,由于导电性布线薄膜化,布线电阻Rp1,Rm1以及Rp2高电阻化。可是,在本发明的生物传感器装置中,由于不论布线电阻高低如何,可以无关地实现高精度测量,所以可以实现在高精度测量中使用的、而且实现低价格的生物传感器芯片。由于尺寸小,可以使生物传感器装置整体尺寸变小。

不限于第1实施方式的生物传感器芯片,对至今为止说明的所有的生物传感器,与测量电路一起进行芯片化是可能的。

在本实施方式的生物传感器芯片中,所用的公共基板也可以是硅基板等的半导体基板或SOI(Silicon on Insulator,绝缘体基外延硅)基板,SOS(Silicon on Sapphire,兰宝石基外延硅)基板,玻璃基板等的绝缘性基板等任何的基板。可是,有必要选择与生物传感器电极上涂布的酶以及试剂类不反应的基板。

如图16所示,即使是使图10所示的导电性布线多层化的情况的生物传感器,也可以与测量电路16一起设置在公共的基板上。因为通过使导电性布线多层化,可以进一步减少生物传感器面积,所以可以制造更小型的生物传感器芯片37。

或者,如图17所示,也可以在同一基板上设置图11,图12所示的生物传感器和测量电路16。该变形例的生物传感器芯片80在与测量电路16的公共的基板上搭载设置有生物传感器的基板和设置有测量电路16的基板。而且,在设置有生物传感器的基板背面整体上设置有对置极端子。

如图18所示,即使是图13,14所示的对置极参照电极和对置极端子的2个电极与对置极连接的生物传感器,也可以在与测量电路16的公共基板上设置。具体讲,使设置生物传感器的基板和设置测量电路16的基板搭载在公共基板上。

(第10实施方式)

图19是示出本发明第10实施方式的生物传感器芯片40的平面图,图20是示出本实施方式的生物传感器芯片40的截面图。

如图19、20所示,本实施方式的生物传感器芯片40具有设置有具有3电极的生物传感器的生物芯片38,设置有测量电路的测量电路芯片43,支持传感器芯片38以及测量电路芯片43的公共基板60。而且,生物传感器内对置极端子104、作用极端子103以及作用极参照端子10分别通过导线与测量电路芯片43连接。

在设置有测量电路的基板具有与生物传感器中的酶或介体的反应试剂等亲和性差时或具有反应性时,则如图15示出的生物传感器芯片所示,难以在与设置有测量电路16的基板的同一基板上设置。因此,采取本实施方式那样的芯片上芯片(chip on chip)构造。在本实施方式的生物传感器芯片40中,可以任意组合设置有生物传感器的基板和设置有测量电路的基板。

从生物传感器的导电性布线上与被测成分对应的酶、介体的关系出发,往往不能使用与测量电路16的信号布线同一物质。在该情况下,本实施方式那样的构造是有用的,通过该构成,可以实现尺寸足够小的生物传感器芯片。

通过采取本实施方式那样的芯片上芯片构造,即使是任何种类的生物传感器也可以作成小型芯片状。而且,因为不包含特殊的工序,所以使低造价也是可能的。

在本实施方式的生物传感器芯片中,在公共基板60上配置传感器芯片38和测量电路芯片43,也可以是没有公共基板60,直接在传感器芯片38上配置测量电路芯片43的构造,相反,也可以是具有在测量电路芯片43上配置有传感器芯片38的芯片上芯片构造的生物传感器芯片。

在本实施方式,连接生物芯片和测量电路芯片时用导线,然而,也可以使生物芯片上面和计测电路芯片上面对置,采取块形连接的构造。用网格焊台阵列(略作BGA)等连接芯片彼此之间的构造。或者,在设置贯通基板的块或电极的情况下,即使层叠芯片之间也可以经由贯通电极连接。因为通过这些方法信号传达路径变短,所以有可能性使误差进一步变小。

(第11实施方式)

图21是示出本实施方式的第11实施方式的生物传感器平面图。

如图21所示,本实施方式的生物传感器74具有例如在第1实施方式说明的作用极端子103,作用极参照端子10,对置极端子104三电极的生物传感器在同一基板上形成2只,使2个对置极端子104公共化。在这里,通过使2个对置电极公共化,可以降低电极数,实现生物芯片小型化,降低造价等。

这样一来,通过配置2个使用由与不同被测成分对应的酶、介体等形成的反应试剂的生物传感器,由于可以一次测量不同因子,可以同时进行多个检查,所以可以减轻患者的负担。如果在1个生物传感器装置上搭载的生物传感器的种类在2种以上,也可以是几种。实用上通过1个生物传感器芯片在特定的疾病诊断中可以进行必要的多个检查,优选通过1个生物传感器芯片迅速地进行定期检诊。因此,在图21中示出在同一基板上形成2个生物传感器的例,生物传感器也可以在3个以上。

因为搭载有该生物传感器的生物传感器芯片是可以取出的,也可以在装置主体保持原样时,根据检查目的选择不同的生物传感器芯片。

在本实施方式的生物传感器中,使对置极端子彼此之间公共化,如果是可能公共化的电极,则可以是任一个电极。例如如果以相互对称的形式配置具有3电极的2只生物传感器,则也可以使邻接的作用极参照端子10公共化。

(第12实施方式)

图22是示出本发明第12实施方式的生物传感器75的平面图及透视图。

如同一图所示,本实施方式的生物传感器75是在同一基板上形成第2实施方式的2个生物传感器,使2个对置极端子104公共化。即:在生物传感器75的背面整个面上设置与2个对置极102连接的公共对置极端子104。

这样一来,即使在背面整个面上设置有对置极端子的生物传感器的情况下,通过装置2个以上,使对置极端子公共化,则同时测量不同的被测定物成为可能,而且可以削减电极数,实现小型化。因为电极数减小,所以制造也容易。生物传感器的对置极端子通过公共化应当可以确保更大面积,可以使电阻值接近理想值的0Ω。

在本实施方式中配置2个生物传感器,但也可以配置3个以上生物传感器。

如第5实施方式所示,配置多个在基板上面的整个面上设置有对置极的生物传感器的情况下,也可以使对置极端子公共化。

即使在对置极侧或作用极侧的导电性布线或电极多层化时,可以使2个以上的生物传感器集中到1只生物传感器上。

(第13实施方式)

图23是示出本实施方式的第13实施方式的生物传感器芯片81的平面图。

如同一图所示,本实施方式的生物传感器芯片81包含具有作用极端子103、作用极参照端子10以及对置极端子104的3电极的各个具有传感器131的生物传感器2个,和与各自的生物传感器连接的测量电路16。而且,生物传感器和测量电路16设置在同一基板上。此外,邻接的生物传感器的对置极端子104成为相互公共化。

由于生物传感器各自可以测量相互不同的物质,所以使同时多个测量成为可能。

在图23示出并行配置生物传感器和测量电路16的例子,然而,也可以是例如在生物传感器上层叠设置有测量电路的芯片那样的构造。这时,测量电路和生物传感器的连接也可以用导线,也可以用BGA,也可以用贯通基板的贯通电极。

(第14实施方式)

图24是示出本发明第14实施方式的生物传感器芯片82的电路图,图25是示出本实施方式的生物传感器芯片82的平面图。

如图24所示,本实施方式的生物传感器芯片82具有第1生物传感器58,第2生物传感器59,和与第1生物传感器58以及第2生物传感器59连接的测量电路模块57。

如图25所示,第1生物传感器58、第2生物传感器59各自具有作用极端子,作用极参照端子以及对置极,相互的对置极被连接。

而且,测量电路模块57具有与第1生物传感器58以及第2生物传感器59连接的测量电路16,在第1生物传感器58的作用极端子以及作用极参照端子和测量电路16之间设置的第1开关组54,在第2生物传感器59的作用极端子以及作用极参照端子和测量电路16之间设置的第2开关组56,和用于控制第1开关组54以及第2开关组56的通、断的选择控制电路。

选择控制电路52供给连接控制信号s53,控制第1开关组54的开关,供给连接控制信号s55,控制第2开关组56的开关。具体讲,在用第1生物传感器58测量时按照使第1开关组54导通,第2开关组56断开那样地控制,在用第2生物传感器59测量时,按照使第1开关组54断开,第2开关组56导通那样地控制。

根据本实施方式的生物传感器芯片82,由于对2个生物传感器可以只通过1个测量电路进行测量,所以除可以测量多个物质之外,可以进一步减小芯片面积。通过该构造也实现降低造价。

在本实施方式的生物传感器芯片中,第1开关组54以及第2开关组56往往多少具有导通电阻,而由于导通电阻等效地包含在生物传感器的导电性布线的布线电阻内,即使在本电路构成中也不降低测量精度。

在本实施方式的生物传感器芯片中,在同一基板上形成2个生物传感器,然而也可以形成3个以上的生物传感器。因为通过开关可以选择所测量的生物传感器,所以也可以在1个测量电路上连接3个以上的生物传感器。

在本实施方式中,在同一基板上形成有第1生物传感器58、第2生物传感器59和测量模块57,然而也可以在公共基板上搭载具有生物传感器以及测量电路的各个芯片的构造。

也可以是多个芯片层叠,通过BGA或贯通电极或导线连接的构造。

本实施方式的生物传感器芯片包含具有作用极端子,作用极参照端子,对置极端子的3电极的生物传感器,然而也可以包含具有作用极端子,对置极端子,对置极参照电极的3电极的生物传感器。

(第15实施方式)

图26是示出本发明的第15实施方式的生物传感器芯片83的平面图。

如图26所示,本实施方式的生物传感器芯片83在基板上设置2个具有作用极端子103、作用极参照端子10、对置极端子104以及用于与被测定流体反应的传感器部131的生物传感器,在同一基板上设置与2个生物传感器连接的1个测量电路50。

本实施方式的生物传感器芯片83的特征为,与相互各异的被测成分对应的生物传感器的传感器部131邻接设置。在该反应部包含涂布由酶或介体等形成的反应试剂的对置极以及作用极。

因为在本实施方式的生物传感器芯片中,由于2只生物传感器的反应部邻接,所以可以通过只1点接触血液样品可以进行2种测量。因此,使生物传感器的接触部构造简便化。由于血液样品是极微量的,所以被验者采血负担非常轻。

在本实施方式的生物传感器芯片中,互相邻接设置3种以上的生物传感器反应部也是可能的。据此,通过更加简单的接触部构造可以实现3种以上的测量。也可以使血液样品的必需量减少。

(第16实施方式)

在至此为止的实施方式中,对具有3端子的生物传感器,和具有它的生物传感器芯片以及生物传感器装置加以说明,然而,在以下的实施方式中对生物传感器具有4个端子的例加以说明。

图27以及图28示出本发明的第16实施方式的生物传感器装置电路构成。这些图示出的生物传感器装置处于装着本发明的生物传感器210,电连接测量电路220和生物传感器210的状态。对生物传感器210的构成将在后述。生物传感器装置除了在这里示出的生物传感器210或测量电路220之外,根据需要包含数据分析装置或测量结果的显示部等。

图27所示的测量电路220包含在生物传感器210的作用极端子213a(与本发明第1作用极端子相当)上施加电压Vp1(与本发明的第1作用极电压相当)的作用极电压施加部221A,在生物传感器210的对置极端子214a(与本发明的第1对置极端子相当)上施加电压Vm1(与本发明第1对置极电压相当)的对置极电压施加部222,在作用极电压施加部221A以及对置极电压施加部222上分别供给电压Vpr(与本发明的作用极基准电压相当)以及Vmr(与本发明的对置极基准电压相当)的基准电压源223,对从作用极电压施加部221A输出的作用极电流量信号CV1进行处理的信号处理电路224。

另一方面,图28所示的测量电路220包含作用极电压施加部221以及对置极电压施加部222A分别代替上述的作用极电压施加部221A以及对置极电压施加部222,信号处理电路224是对从对置极电压施加部222A输出的对置极电流量信号CV2进行处理的电路。

作用极电压施加部221参照生物传感器210的作用极参照端子213b的电压Vp2。作用极电压施加部221只是参照电压Vp2,输入阻抗高,在作用极参照端子213b内流过的电流Ip2大体为零。因此,没有因作用极参照端子213b的电阻值Rp2产生电压降,也可以认为电压Vp2和电压Vp(与本发明的第2作用极电压相当)相等,实质上,作用极电压施加部221通过作用极参照端子213b,参照作用极211的电压Vp,生成电压Vp1,以便该电压Vp与供给的电压Vpr一致。

作用极电压施加部221A除了具有上述作用极电压施加部221的功能之外,还有测量在作用极端子213a内流过的作用极电流If1的功能,输出对应于测量的作用极电流If1大小的作用极电流量信号CV1。

对置极电压施加部222参照生物传感器210的对置极端子214b(与本发明的第2对置极端子相当)的电压Vm2。对置极电压施加部222只是参照电压Vm2,输入阻抗高,在对置极端子214b内流过的电流Im2大体为零。因而,没有因对置极端子214b的电阻值Rm2产生电压降,也可以考虑电压Vm2和电压Vm(与本发明的第2对置电压相当)相等,实质上,对置极电压施加部222通过对置极端子214b,参照对置极212的电压Vm,生成电压Vm1,以便该电压Vm与供给的电压Vmr一致。

对置极电压施加部222A除了有上述功能之外,还有测量在对置极端子214a内流过的对置极电流If2的功能,输出与测量的对置极电流If2大小对应的对置极电流量信号CV2。

图29是示出作用极电压施加部221,221A以及对置极电压施加部222,222A的几个电路例。以下对同一图内示出的电路构成顺序地加以说明。

图29(a)示出作用极电压施加部221或对置极电压施加部222的电路例。在同一图示出的作用极电压施加部221或对置极电压施加部222成为把电压参照电路430的输出取代电压Vpr或电压Vmr,供给至图44所示传统测量电路1123的对置侧电压源1106的构成。以下,以作用极电压施加部221作例加以说明。

电压参照电路430通过运算放大器构成,在其倒相(反转)输入端子以及非倒相输入端子上分别供给电压Vp2,Vpr。电压参照电路430输出电压,以便使电压Vp2和电压Vpr相等。作为电压源420的运算放大器输入该电压,输出与该电压相当的电压Vp1。

图29(b)示出作用极电压施加部221A或对置极电压施加部222A的电路例。在同一图示出的作用极电压施加部221A或对置极电压施加部222A为把电压参照电路430的输出取代电压Vpr1或电压Vmr1,供给至传统的生物传感器装置的电压源210的构成。以下,以作用极电压施加部221A作例加以说明。

作为电压参照电路430的运算放大器输出电压,以便使作为输入的电压Vp2和电压Vpr相等。该输出电压供给作为电压源420的运算放大器的非倒相输入端子。在该运算放大器的负反馈部上设置电阻元件,根据流过该电阻元件的作用极电流If1大小,输出作用极电流量信号CV1。

图29(c)示出作用极电压施加部221A或对置极电压施加部222A的电路例。在同一图示出的作用极电压施加部221A或对置极电压施加部222A具有电压参照电路430以及电压电流变换电路440。本电路为例如与特开平11-154833号公报或美国专利第5986910号说明书中公开的电压电流变换电路同样的构成。以下,以作用极电压施加部221A作例如以说明。

电压参照电路430输出电压Vp1,以便使作为输入的电压Vp2和电压Vpr相等。电压电流变换电路440以控制电压参照电路430的输出的信号作为输入,输出作用极电流量信号CV1。

其次,对通过本实施方式的测量电路220在生物传感器210上施加的电压,以及测量的电流加以说明。

通过作用极电压施加部221、221A生成电压Vp1,施加在作用极端子213a上,以便使电压Vp和电压Vpr一致。据此,即使产生因作用极端子213a的电阻值Rp1引起的电压降低,也可以使电压Vp固定在电压Vpr。

同样地,通过对置极电压施加部222,222A,生成电压Vm1,施加在对置极端子214a上,以使电压Vm和电压Vmr一致。据此,即使产生因对置极端子214a电阻值Rm1导致的电压降低,也可以使电压Vm固定在电压Vmr。

因而,通过测量电路220在生物传感器210的作用极211和对置极212之间施加的电压如下式(35)所示。

Vf=(Vpr-Vmr)                    (35)

而且,从式(8)以及式(35)可以得到通过施加电压,在生物传感器210上流过的电流If如下式(36)所示。

If=f{Q,Vpr-Vmr}            (36)

如果比较式(35)和式(7),则可以知道在式(35)中,没有因作用极端子213a以及对置极端子214a的布线电阻Rp1,Rm1产生电压降低。即:与生物传感器210的作用极端子213a以及对置极端子214a的布线电阻没有关系,可以使作用极211和对置极212之间所加的电压Vf为固定值。因而,在生物传感器210内流过的电流不含有误差。而且,该电流作为作用极电流If1或对置极电流If2,通过作用极电压施加部221A或对置极电压施加部222A测量,成为作用极电流量信号CV1或对置极电流量信号CV2。作用极电流量信号CV1或对置极电流量信号CV2通过信号处理224进行处理、算出测量对象的化学物质浓度。

以上,根据本实施方式,与生物传感器210的作用极端子213a以及对置极端子214a的布线电阻无关,可以在作用极211和对置极212之间施加预定的电压Vf。据此,使测量不包含误差的正确电流成为可能,可以提高生物传感器装置的测量精度。尤其是,根据本实施方式的生物传感器,则通过设置作用极参照端子213b以及对置极参照端子214b,与只设置任一方的参照端子比较,使进一步提高测量精度成为可能。

在图29(a)所示的作用极电压施加部221或对置极电压施加部222中,省略电压源420,也可以把电压参照电路430的输出原封不动地作为电压Vp1或电压Vm1。也可以通过运算放大器以外方式实现电压源420以及电压参照电路430。即使加上这样的变更,也无损本发明所起的效果。

以作用极211以及对置极212的任一方作为第1极,另一方作为第2极时,在与第1极(例如,作用极211)连接的第1电极(例如作用极端子213a)上施加第1电压(例如,电压Vp1)的第1电压施加部作成传统的,与第2极(例如,对置极212)连接的第2电极(例如,对置极端子214a)上施加第2电压(例如,电压Vm1)的第2电压施加部作为本实施方式的(例如,对置极电压施加部222)。而且,该第2电压施加部通过与第2极连接的第3电极(例如,对置极端子214b),参照第2极的第3电压(例如,电压Vm),生成第2电压,以便使该第3电压与所供给的基准电压(例如,电压Vmr)一致。这样一来,即使在省略作用极电压施加部221,221A以及对置极电压施加部222,222A任一方,与传统方式比较,也可以实现进一步提高精度的生物传感器装置。

(第17实施方式)

图30示出本发明第17实施方式的生物传感器装置的电路构成。本实施方式的测量电路220A作为在生物传感器210的作用极端子213a以及对置极端子214a上施加电压的手段,分别具有在第16实施方式中说明的作用极电压施加部221A以及对置极电压施加部222A,对由此输出的作用极电流量信号CV1以及对置极电流量信号CV2进行处理,对测量对象的化学物质进行分析。以下,对测量电路220A加以说明,而省略对第16实施方式中已经说明过的内容,附加与图27以及图28上附加的符号的同样的符号,进行参照。

作用极电压施加部221A测量在作用极端子213a内流过的电流If1作为在生物传感器210内流过的电流,输出作用极电流量信号CV1。作用极电压施加部221A除了图29(b)以及(c)所示的电路之外,其它各种构成是可能的。

对置极电压施加部222A测量在对置极端子214a内流过的电流If2作为生物传感器210内流过的电流,输出对置极电流量信号CV2。对置极电压施加部222A除了图29(b)以及(c)所示的电路外其它各种构成是可能的。

信号处理电路224A处理作用极电流量信号CV1以及对置极电流量信号CV2。在第16实施方式中被处理的信号是作用极电流量信号CV1以及对置极电流量信号CV2的任一方,而在本实施方式中,通过将它们都采用,使涉及在生物传感器210内流过的电流的信息量加倍。因而,与第16实施方式的比较,可以使S/N比提高约6db。

以上,根据本实施方式,可以进一步提高生物传感器装置的测量精度(在S/N比约6db)。通过处理作用极电流量信号CV1以及对置极电流量信号CV2双方,可以起着所谓降低同相噪声的效果。

(第18实施方式)

图31示出本发明第18实施方式的生物传感器装置的电路构成。本实施方式的测量电路220B在第17实施方式的测量电路220A内还包含电流量信号生成部225。以下,说明测量电路220B,而对在第17实施方式已说明的内容,省略说明,附加与图30所附符号相同的符号,进行参照。

电流量信号生成部225以作用极电流量信号CV1以及对置极电流信号CV2作为输入,以表示生物传感器210内流过的电流大小的电流量信号CV作为输出。电流量信号生成部225,例如如图31所示,通过差分单变换器是可能实现的。差分单变换器对作为输入的2个信号相加,输出一个信号。即:在本实施方式中,电流量信号CV对作用极电流量信号CV1和对置极电流量信号CV2进行相加。

信号处理电路224B是与第16实施方式的测量电路220的信号处理电路224大体同样的构成,以电流量信号CV作为输入,算出测量对象的化学物质浓度。

以上,根据本实施方式,由于通过电流量信号生成部225把作用极电流量信号CV1以及对置极电流量信号CV2变换为一个电流量信号CV,所以与第17实施方式比较,可以使信号处理电路224B的构成简易化。据此,可以使生物传感器装置小型化,此外,可以实现低价格化。电流量信号生成部225的构成也可以通过图31所示的差动单变换器以外方式加以实现。

(第19实施方式)

图32示出本发明第19实施方式的生物传感器的构造。本实施方式的生物传感器210是例如通过上述的从第1至18的实施方式的测量电路220,220A,220B而被使用。

生物传感器210包含从作用极211延伸的作用极端子213a,13b以及从对置极212延伸的对置极端子214a,对置极参照端子214b。虽未图示,然而在由作用极211以及对置极212组合而成的传感器部上根据测量对象的化学物质,涂布由酶或介体等形成的反应试剂。通过用生物传感器210,可以电子方式检测核苷酸,抗原体,酶,肽,抗体,DNA片断,RNA碎片,葡萄糖,乳酸以及胆固醇等一对化学物质或分子构造间的结合反应。

作用极端子213a是从测量电路(装置主体)来的用于施加电压的端子,作用极端子213b是电压参照用的电极。可是,也可以调换作用极端子213a和作用极参照端子213b。

同样地,对置极端子214a是从测量电路来的用于施加电压的端子,对置极参照端子214b是电压参照用的端子。即使在这里也可以相互调换两端子的配置。

而且,生物传感器210通过在作用极端子和对置极端子之间施加电压,流过对应于在传感器部上附着的血液等的体液内包含的特定化学物质的浓度的电流。这时在作用极211以及对置极212产生的电压可以通过分别参照作用极参照端子以及对置极参照端子的电压获悉。

以上,根据本实施方式,通过在生物传感器210上分别设置作用极端子213a,作用极参照端子213b以及对置极端子214a,对置极参照端子214b,可以边参照作用极211以及对置极212的电压,边调整在作用极211以及对置极212上所加的电压,可以使作用极211和对置极212之间所加的电压作为预定值。据此,即使与作用极端子213a,作用极参照端子213b以及对置极端子214a,对置极参照端子214b连接的布线上不用低电阻的贵金属,没有因布线电阻产生的电流误差也是可能的。

本实施方式的生物传感器各有1个作用极端子和作用极参照端子,也各有1个对置极端子和对置极参照端子,而本发明并不限于此,也可以进一步设置各端子。即也可以分别设置2个以上的作用极端子,作用极参照端子,对置极端子,对置极参照端子,也可以使作用极端子和对置极端子的个数各异。也可以使作用极端子数和作用极参照端子数或对置极端子数和对置极参照端子数各异。

以作用极211以及对置极212任一方作为第1极,另一方作为第2极时,也可以使第1极(例如,作用极211)侧的端子作成1个,第2极(例如,对置极212)侧的端子作成多个。即使是作成这样构造的生物传感器,与第2极连接的多个端子中以任一作为用于在第2极上加电压的端子,通过以另一个作为用于参照第2极电压的端子,与传统的比较,可以更加降低因布线电阻产生的电流误差。

(第20实施方式)

图33示出本发明第20实施方式的生物传感器构造。本实施方式的生物传感器210A是使第19实施方式的生物传感器210的电极作成层叠构造的。如同一图所示,作用极端子213a和作用极参照端子213b相互层叠(平面上看重叠)的同时,对置极端子214a和对置极参照端子214b层叠。据此,可以使生物传感器小型化,此外,可以实现低价格化。

在本实施方式中,作用极端子和作用极参照端子以及对置极端子和对置极参照端子分别层叠,而本发明并不限于此。例如,通过作用极端子和对置极端子,作用极端子和对置极参照端子,或者作用极参照端子和对置极端子层叠,也可以得到与上述同样的效果。

(第21实施方式)

图34示出本发明第21实施方式的生物传感器构造。本实施方式的生物传感器210B是在同一基板上形成2个第19实施方式的生物传感器210。虽未图示,然而由作用极211a以及对置极212a组合形成的传感器部,和由作用极211b以及对置极212b组合形成的传感器部上涂布对应于相互各异的测量对象的化学物质的酶或介体等形成的反应试剂。这样一来,通过在同一基板上设置多个传感器部,使一次测量多个化学物质成为可能。

在本实施方式中,在生物传感器210B上包含2个传感器部,然而也可以包含3个以上。

(第22实施方式)

图35示出本发明第22实施方式的生物传感器构造。本实施方式的生物传感器210C把第21实施方式的生物传感器210B上的对置极212a,212b集中成1个。生物传感器210的对置极212对应于作用极211a,此外,也对应于作用极211b。即:作用极211a,211b共用一个对置极212。因而,在生物传感器210B的对置极端子214c,对置极参照端子214b成为可能省略的,生物传感器210C可以各包含1个对置极端子214a和对置极参照端子214b。据此,可以进一步使生物传感器小型化。

在本实施方式中,2个作用极211a,211b共用一对置极212,而在生物传感器上设置3个以上的作用极,这些作用极也可以共用一个对置极。与此相反,在生物传感器上设置多个对置极,这些对置极也可以共用一个作用极。

(第23实施方式)

图36示出本发明第23实施方式的生物传感器芯片构造。本实施方式的生物传感器芯片230包含涂布由对应于测量对象的化学物质的酶或介体形成的反应试剂,通过施加电压,流过对应于在附着的血液等的体液内包含的特定的化学物质浓度的电流的传感器部231,和在传感器部231上施加电压,测量这时流过电流的测量电路232。通过作用极布线233a,233b以及对置极布线234a,234b电连接传感器部231和测量电路232。

由传感器部231,作用极布线233a,233b以及对置极布线234a,234b形成的部分作成与第19实施方式的生物传感器同样构成。即:作用极布线233a以及对置极布线234a分别在对作用极211以及对置极212施加电压中使用,另一方面,作用极布线233b以及对置极布线234b分别在作用极211以及对置极212电压参照中使用,测量电路232例如作成与从第1到第18实施方式中说明的测量电路220,220A,220B,220C同样的电路构成。即:生物传感器芯片230是在1芯片上形成本发明的生物传感器以及生物传感器装置的。

在生物传感器芯片230上的作用极布线233a,233b以及对置极布线234a,234b通过微细加工薄膜化,电阻值增加。可是,根据本实施方式,如上述说明所示,可以测量不受该电阻值影响的电流。因而,可以实现高精度,超小型而且低价格的生物传感器芯片。

形成传感器芯片230的基板如果是硅基板,绝缘体基处延硅基板,兰宝石基外延硅基板,玻璃基板等的、可能形成传感器231以及测量电路232的基板,则也可以是任何的物质或构造。

以作用极211以及对置极212任一方作为第1极,另一方作为第2极时,在第1极(例如作用极211)和测量电路连接的第1布线(例如,作用极布线233a)上施加第1电压(例如,电压Vp1)的第1电压施加部作成传统的,在连接第2极(例如,对置级212)和测量电路232的第2布线(例如,对置极布线234a)上施加第2电压(例如,电压Vm1)的第2电压施加部作为本实施方式的(例如,对置极电压施加部222,222A)。而且,该第2加电压部通过连接第2极和测量电路232的第3布线(例如,对置极布线234b),参照第2极的第3电压(例如,电压Vm),生成第2电压,以便使该第3电压与所提供的基准电压(例如,电压Vmr)一致。这样一来,在测量电路232,即使省略作用极电压施加部221,221A以及对置极电压施加部222,222A的任一方时,也可以实现高精度,超小型而且低价格的生物传感器芯片。

(第24实施方式)

图37示出本发明的第24实施方式的生物传感器芯片的构造。本实施方式的生物传感器芯片230A使第23实施方式的生物传感器芯片230的布线作成层叠构造。如同一图所示,在使作用极布线233a,233b层叠的同时,使对置极布线234a,234b层叠。据此,可以使生物传感器芯片小型化,此外,可以实现低价格化。

在本实施方式,使作用极布线彼此之间以及对置极布线彼此之间层叠,通过使作用极布线和对置极布线层叠,也可以得到与上述同样的效果。

(第25实施方式)

图38示出本发明第25实施方式的生物传感器芯片的构造。本实施方式的生物传感器芯片230B是在同一基板上分别形成2个第23实施方式的生物传感器芯片230的传感器部以及测量电路。虽未图示,然而在传感器部231a和传感器231b上涂布由对应于相互各异的测量对象的化学物质的酶或介体等形成的反应试剂。这样一来,通过在同一基板设置多个传感器部,使一次测量多个化学物质成为可能,可以实现更高性能的、且低价格的生物传感器芯片。

在本实施方式,在生物传感器芯片230B上包含2个传感器。然而也可以包含3个以上。

(第26实施方式)

图39示出本发明第26实施方式的生物传感器芯片的构造。本实施方式的生物传感器芯片230C把第25实施方式的生物传感器芯片230B的测量电路232a,232b集中在一个上,作为测量电路模块235。

图40示出测量电路模块235的电路构成。测量电路模块235包含测量电路232,使第1生物传感器431a和测量电路232之间连接/断开转换的开关236a,236b,236c,236d,使第2生物传感器431b和测量电路232之间连接/断开转换的开关236e,236f,236g,236h,以及控制开关236a~236h动作的选择控制电路237。开关236a~236h,以及选择控制电路237是与本发明的转换手段相当的。

选择控制电路237通过控制信号SEL1对开关236a~236d进行全开或全闭控制。通过控制信号SEL2对开关236e~236h进行全闭或全开控制。可是,全部开关236a~236h作成不能同时关闭的。即:选择控制电路237选择第1生物传感器431a,第2生物传感器431b的任一个,控制开关236a~236h,以便电连接该所选择的生物传感器和测量电路232。

通过生物传感器431a,生物传感器431b和测量电路232之间设置开关236a~236h,电阻值增加,可是,如已述的所示,根据本发明,可以测量正确的电流,而与该电阻值无关。

以上,根据本实施方式,使生物传感器的转换成为可能,与第25实施方式的生物传感器芯片230B比较,可以削减应包含的测量电路个数。据此,可以使生物传感器芯片更一步小型化。

在本实施方式,通过二个控制信号SEL1,SEL2控制开关236a~236h,但本发明不限于此。例如只通过控制信号SEL1也可以控制开关236a~236h,也可以用另外的方法进行开关的转换。

(第27实施方式)

图41示出本发明第27实施方式的生物传感器构造。本实施方式的生物传感器芯片230D的电路构成是与第26实施方式的生物传感器芯片230C同样的。与生物传感器芯片230C不同点在于:传感器231a,231b邻接配置。这样一来,通过邻接配置多个传感器231a,231b,通过血液等体液样品不在多点、而只在一点附着,可以进行多个化学物质分析。

以上,根据本实施方式,由于需要的血液等的体液样品为微小量就解决问题,所以减轻被验者采血等的负担。通过使传感器部邻接,可以使附着样品的部分的构造简单化。

通过在生物传感器中,邻接配置传感器部,可以得到与上述同样效果。

(第28实施方式)

图42示出本发明第28实施方式的生物传感器芯片构造。本实施方式的生物传感器芯片240分别在相互各异的半导体集成电路上形成第23实施方式的生物传感器芯片230的传感器部231以及测量电路232,作为传感器芯片241以及测量电路芯片242,作成在同一基板上形成这些芯片的芯片上芯片构造。通过导线43电连接传感器芯片241的作用极端子213a,作用极参照端子213b以及对置极端子214a,对置极参照端子214b,和测量电路芯片242。图42b是同一图(a)中A上的截面图。

在第23实施方式中,在生物传感器芯片230的传感器部231上涂布的反应试剂在亲和性或非反应性等方面不适合形成测量电路芯片242的基板材料,即:生物传感器芯片230的基板材料时,使同一基板上形成传感器部231和测量电路芯片242非常困难。对于反应试剂和作用极布线233a,233b以及对置极布线234a,234b不适合时也是同样的。可是,由于本实施方式的生物传感器芯片240,242在相互各异的半导体集成电路上形成传感器及测量电路芯片,不产生这类问题。

以上,根据本实施方式,通过使生物传感器芯片作成芯片上芯片构造,可以实现用各种反应试剂的生物传感器芯片。据此扩展基于生物传感器芯片的测量对象。

在本实施方式中,在支持基板上配置传感器芯片241以及测量电路芯片242,然而本发明并不限于此。也可以省略支持基板,在传感器芯片241上直接配置测量电路芯片242,相反,也可以在测量电路芯片242上直接配置传感器芯片241。

通过导线43连接传感器芯片241和测量电路芯片242,然而也可以用网格焊球阵列(BGA封装)等连接。

本实施方式的生物传感器芯片240使第23实施方式的生物传感器芯片230作成芯片上芯片构造,然而本发明并不限于此。例如,使第9到第27实施方式的生物传感器芯片230A~230D或另外的构成作成芯片上芯片构造也是可能的。

工业上利用的可能性

本发明的生物传感器装置以及生物传感器在例如血糖值的测量器等、生物物质的测量中能良好地应用。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号