首页> 中国专利> 控制发动机转矩达到峰值主压的方法和装置

控制发动机转矩达到峰值主压的方法和装置

摘要

本发明涉及控制发动机转矩达到峰值主压的方法和装置,其中控制动力传动系统的方法,该动力传动系统包括变速器、发动机和电机包括监测发动机旋转速度、监测变速器流体的温度、基于发动机旋转速度和所述变速器流体的温度来确定液压控制系统中的最大液压压力,基于最大液压压力确定预测离合器转矩容量,基于预测离合器转矩容量产生从发动机的优选输入转矩,并基于优选输入转矩来控制发动机。

著录项

  • 公开/公告号CN101439715A

    专利类型发明专利

  • 公开/公告日2009-05-27

    原文格式PDF

  • 申请/专利权人 通用汽车环球科技运作公司;

    申请/专利号CN200810191107.3

  • 申请日2008-11-04

  • 分类号B60W10/06(20060101);B60W10/02(20060101);B60W10/08(20060101);F16D48/04(20060101);B60W10/30(20060101);B60W10/10(20060101);B60W20/00(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人原绍辉;曹若

  • 地址 美国密执安州

  • 入库时间 2023-12-17 21:57:44

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-06-19

    授权

    授权

  • 2009-07-22

    实质审查的生效

    实质审查的生效

  • 2009-05-27

    公开

    公开

说明书

相关申请的交叉参考

本申请要求2007年11月4日申请的美国临时申请No.60/985268的优先权,其内容将在此处作为参考。

技术领域

本发明涉及机电变速器的控制系统。

背景技术

这个部分的说明提供与这里公开内容相关的背景技术,但是不构成现有技术。

已知的传动结构包括转矩生成装置,包括内燃机和电机,其将转矩通过变速装置传递到输出元件。一个具体的传动系包括双模式、复合分解、利用输入元件来从主动力源接收发动转矩的电机械变速器,优选内燃机,和输出元件。输出元件可操作连接到机动车的动力动力传动系统来传递牵引转矩。电机,可作为为马达或者发电机,产生输入到变速器的转矩,独立于内燃机的转矩输入。电机可以将车辆的动能通过车辆动力传动系统的传递转换成可以在电能储存装置中储存的电能。控制系统测量来自于车辆和操作者的各种输入并提供可操作的传动系控制,包括控制变速操作状态和换挡,控制转矩生成装置,并调节电能储存装置和电机之间的电能交换来管理变速器的输出,包括转矩和旋转速度。

在混合传动车辆中的上述装置的操作需要很多转矩轴承轴心或者对表示连接到上述发动机、电机和传动系统的装置的管理。从发动机而来的输入转矩和从电机或者多个电机而来的输入转矩可以各自或者共同提供转矩。各种前述的混合动力驱动系统的各种控制方案和部件之间的操作连接是已知的,控制系统必须能够为了实现混合动力系统的功能而接合和分离各种部件。接合和分离已知是通过应用可选择操作的离合器在变速器中实现的。

离合器是现有技术中很熟悉的接合和分离转矩轴的装置,包括控制旋转速度和轴之间的转矩差。离合器已知具有各种不同的设计和控制方法。一种已知的离合器类型是通过分离或者接合两个连接表面的机械离合操作,例如离合器盘片,在操作的时候,当连接在一起的时候,互相之间施加摩擦转矩。操作这样一种离合器的操作方法包括采用液压控制系统,通过液压通道实施液压传递来在两个连接表面之间的输出或者释放夹紧力。这样操作,离合器的操作不是二元的,而是具有一系列的接合范围,从完全脱离到同步但是没有接合,到接合但是只有最小夹紧力,到接合具有最大夹紧力。施加到离合器上的夹紧力决定离合器可以在离合器滑动之前能达到的多少反应转矩。离合器可以是异步的,设计来适应滑动,或者离合器可以是同步的,设计来操作几乎没有滑动或者没有滑动,这里公开的内容是关于同步离合器的。

液压控制系统,如上所述,采用充满液压流的管道来选择性在变速器中驱动离合器。但是,液压控制系统通常可以在混合动力传动系统中执行其他的功能。例如,在混合动力传动系统中采用的电机产生热量。已知的实施例采用液压控制系统中的液压油以持续流的方式作为冷却电机的基本机器冷却功能。其他已知实施例已知具有可以选择的或者温度驱动的活性机器冷却功能去抵抗高电机温度,提供在高温条件下的补充冷却。此外,所知的实施例利用液压油来润滑机械装置,例如轴承。通常,液压回路已知包括一定的内部渗漏。

已知的液压油在液压控制系统中是由泵进行加压。泵可以采用电动或者优选机械驱动。除了这个主要液压泵,已知的液压控制系统也包括辅助液压泵。内置驱动机构在一定速度操作,由泵从回路中抽出液压流并给液压控制系统加压。由泵或者多个泵提供的液压流的供给受到泵的速度、由PLINE施加的返回压力以及液压流或液压油温度(TOIL)来影响。

在液压控制系统中的效果或者网络压力PLINE受到诸多因素影响。附图1图表显示了在举例液压控制系统中根据这里公开的液压流的因素的模型。本领域技术人员应当理解,质量守恒定律说明,在一个稳定的状态,流入一个系统的流体等于流出一个系统的流体。如附图1中所采用的,液压油的流体通过泵供应用于液压控制系统。从液压控制系统释放的流体穿过了液压控制系统供给的各种功能件。该实施例包括以下功能:液压油充满了离合器机构去为锁紧离合器提供夹紧力,如上所述;液压油提供电机和其它需要零部件的基本冷却和运动冷却;液压油也被用来润滑变速器的部件;并且液压油流通过内部渗透达到液压循环。PLINE说明了系统中保持的液压油的最终变化:对于任何穿过系统的流体,系统中的最终压力取决于系统中的流体阻抗。流体阻抗越高导致了给定的流体较高的系统压力。相反,对于较低的流体阻抗,导致了给定的流体较低的系统压力。附图1中应用的,PLINE或液压控制系统内的压力的变化取决于液压控制系统的使用。例如,充满一个没有充满的变速器离合器会从液压控制系统消耗较大量的液压油。通向离合器的孔为了在较短的时间跨度内抽出较大量的流体而具有较低的阻抗。结果,在离合器充满的过程中,在其他的未充液压控制系统中的PLINE减少。相反地,对于液压控制系统提供的系列功能件,PLINE基于泵提供的流体进行变化。泵提供的流体的增加会增加在其他未充液压控制系统中的PLINE减少。对于与提供的功能件相关的任何的流体限制组,泵中所流出流体的增加会导致较高的PLINE。通过监测PLINE和调节泵或者多个泵供给液压控制系统的液压流,PLINE可以根据所需的管线压力和变换液压控制系统的使用来进行控制。

如上面所述,为了锁止离合器并产生离合器转矩容量,PLINE直接应用于离合器。离合器的离合器转矩容量的数量直接与PLINE相关。采用液压控制系统的输入来基于离合器转矩容量来确定从发动机的优选输入转矩的离合器控制方法将是有效的。

发明内容

动力动力传动系统包括机械的可操作结合到内燃机的机电变速器和适用于选择性传送机械能到输出元件的电机。控制动力动力传动系统的方法包括监测发动机的旋转速度、监测变速器流体的温度、基于发动机旋转速度和变速器流体的温度来确定在液压控制系统中的最大液压压力,基于最大液压压力确定预测的离合器转矩容量、基于预测的离合器转矩容量产生从发动机的优选输入转矩、和采用优选输入转矩来控制发动机。

附图说明

结合附图通过示例性方式将说明一个或者多个实施例,其中,

附图1是图表显示根据这里公开实施例的影响液压控制系统中的液压流的因素的模型。

附图2是根据这里公开的动力动力传动系统例举示意图。

附图3是表示根据这里公开的控制系统和动力动力传动系统的举例结构的示意图。

附图4是根据这里公开的液压回路的示意图。

附图5是图表表示根据这里公开的可以估计液压主压力的举例主压力评估模块。

附图6是图表显示根据这里公开的示例性可以使用的主压力评估模块可以说明由液压控制系统在给定的当前车辆操作情况下产生的最大可用压力。

附图7是图表显示根据这里公开的在动力动力传动系统操作中的举例变化,显示了离合器容量和发动机速度之间的关系;和

附图8是图表显示根据这里公开的调整发动机转矩和最大可用离合器转矩容量的举例信息流。

具体实施方式

参考附图,其中显示的是为了仅仅显示特定实施例的目的而不是为了对其进行限制的目的。附图2和3显示了机电混合动力传动系统的实施例。根据本发明的机电混合动力传动系统的例子在附图2中显示,包括双模式、组合分离、机电混合变速器10可操作连接到发动机14和第一电机(‘MG-A’)56和第二电机(‘MG-B’)72上。发动机14和第一和第二电机56和72每个都能产生能量并传送到变速器10。由发动机14和第一和第二电机56和72产生的能量传送到变速器10将被描述为输入转矩,这里分别称为TI,TA,TB,速度分别称为N1,NA,NB

示例性发动机14包括在多种状态下选择操作的多缸内燃机,通过输入轴12来将转矩传送到变速器10,并可以是电火花点燃或者压燃发动机。发动机14包括可操作地连接到变速器10的输入轴的曲轴(未示)。旋转速度传感器11测量输入轴12的旋转速度。发动机14输出的功率包括旋转速度和输出转矩,由于在发动机14和变速器10之间的输入轴12上的转矩消耗部件的布置,对于变速器10的输入速度N1和输入转矩TI是可以变化的,例如,液压泵(未示)和/或转矩控制装置(未示)。

示例性变速器10包括三个行星轮装置24、26、28,四个可选择接合的转矩传递装置,即离合器C1 70,C2 62,C3 73,C4 75。这里所使用的离合器是指任何转矩摩擦传递装置,例如包括单个或者复合片离合器或者组合、带离合器或者制动器。液压控制回路42,优选通过变速器控制模块(随后称为‘TCM’)17来控制,可操作控制离合器状态。离合器C2 62和C4 75优选包括可以液压驱动的旋转摩擦离合器。离合器C1 70和C3 73优选包括液压控制的静态装置可以连接固定到壳体68。离合器C1 70,C2 62,C3 73,C4 75每个优选液压驱动,通过液压控制回路42可选择性接收液压流。

第一和第二电机56和72优选包括三相AC电机,每个包括定子(未示)和转子(未示)以及各自的分解器80和82。每个机器的马达定子都固定到变速器壳体68的外部部分,并包括缠绕线圈的定子芯从其间延伸。第一电机56的转子支撑在行星轮轮轴上,通过第二行星轮装置26可操作连接到轴60。第二电机76的转子固定到轴套轮毂66上。

每个分解器80和82优选包括可变的阻抗装置包括分解器转子(未示)和定子(未示)。分解器80和82各自适当布置并装配到第一电机和第二电机56和72上。各个分解器80和82的定子可操作连接到第一电机和第二电机56和72的一个定子上。各个分解器的转子可操作连接到第一电机和第二电机56和72的转子上。每个分解器80和82明显和可操作地连接到变速器功率转换器控制模块(随后称为’TPIM’)19,每个传感并测量分解器转子相对于分解器转子的旋转位置,因此测量第一电机和第二电机56和72的各自旋转位置。此外,从分解器80和82输出的信号被编译来提供第一电机和第二电机56和72的各自转速NA和NB

变速器10包括输出元件64,例如轴,可操作连接到车辆(未示)动力动力传动系统90,来提供输出功率,例如到车轮93,其中之一在附图2中显示。输出功率通过输出旋转速度NO和输出转矩TO来限定。变速器输出速度传感器84测量输出元件64的旋转速度和旋转方向。每个车轮93,优选配有用于监视车轮速度VSS-WHL的传感器94,其输出由关于附图3描述的分配控制模式系统的控制模块来测量,来对于制动控制、牵引控制和车俩加速度管理来决定车辆速度、车轮绝对速度和相对速度

发动机14和第一第二电机56、72的输入转矩(分别是TI,TA,TB)是通过燃料或者储存在电能储存装置74(随后称为‘ESD’)中的的电能转换的结果产生的。ESD74是高压DC通过DC转换导体27连接到TPIM19,转换导体27包括接触开关38。当接触开关38关闭的时候,在通常操作中,电流可以在ESD74和TPIM19之间流动。当接触开关38打开,电流可以在ESD74和TPIM19之间终止。TPIM19通过转换导体29把电能传送到第一电机56和从第一电机56获得电能,并且TPIM19通过转换导体31把电能传送到第二电机72和从第二电机72获得电能,响应于第一第二电机56、72的转矩命令来实现输入转矩TA和TB。电流根据ESD74是否充电或者放电来传送到ESD74或者从ESD74传送。

TPIM19包括成对功率转换器(未示)和各自马达控制模块(未示)设置为从那里接收转矩命令和控制变换器状态来提供马达驱动或者再生功能来实现输入转矩TA和TB。功率转换器包括已知的额定三相功率电动装置,每个都包括多个绝缘栅双极型晶体管(未示)通过高频转换来从ESD74转化DC能量到AC能量来相第一第二电机56、72中的各自提供能量。绝缘栅双极型晶体管形成一个设置为接收控制命令的转换模式功率源。三相电机的每一相都具有一对典型的绝缘栅双极型晶体管。绝缘栅双极型晶体管的状态被控制来提供马达驱动机械功率产生或者电动功率再生功能。三相转换器通过DC转换导体27接收或者提供DC电源,并将其向或从三相AC电源转换,其将被引导到第一第二电机56、72或者从中导出来用于通过转换导体29和31各自来操作作为马达或者发电机。

附图3是分配控制模块系统的结构示意图。随后描述的元件包括全车控制结构子集,并提供附图2所述的示例动力传动系统的协同系统。分配控制模块系统与相关信息和输入同步,并执行运算法则来控制各行总驱动器来实现控制目标,目标包括与燃油经济性、排放、性能、驾驶性能、硬件保护,包括ESD74的电池和第一第二电机56、72。分配控制模块系统包括发动机控制模块(随后称为‘ECM’)23,TCM17,电池组控制模块(随后称为‘BPCM’)21和TPIM19。混合控制模块(随后称为‘HCP’)5提供监督控制和ECM23、TCM17与BPCM21和TPIM19的协同。使用界面(‘UI‘)13可操作连接到多个装置,通过这些装置车辆操作人员控制或者指挥机电混合传动的操作。装置包括加速踏板113(’AP’),由其来决定操作人员的转矩需要,操作人员制动踏板112(‘BP’)、变速器齿轮选择器114(‘PRNDL’),车辆速度巡航控制(未示)。齿轮选择器114可以具有操作可选择位置的不连续的数字,包括输出元件64的旋转方向来实现向前或者向相反方向。

前述的控制模块与其他的控制模块、传感器和驱动器通过局域网(随后称为‘LAN‘)总线6联系。LAN总线6允许在操作参数的状态和各种控制模块之间的执行命令信号建立联系。使用的特殊的通信协议是专门应用的。LAN总线6和合适的协议提供了有力的通信和多种控制模式界面在前述控制模式之间,其他控制模式提供了诸如防抱死、牵引控制和车辆稳定性的功能。多重的信息总线可以用于改善通信速度和提供几个信号冗余和完整水平。各个控制模式之间的通信可以通过使用直接连接来实现,例如,系列外围界面(‘SPI’)总线(未示)。

HCP5提供动力传动系统的管理控制,用于ECM23、TCM17、TPIM19与BPCM21的协同操作。基于各种从使用界面13而来的输入信号和动力传动系统,包括ESD74、HCP5产生各种命令,包括:操作者转矩需要(‘TO-REQ’),命令输出转矩(‘TCMD’)来驱动动力动力传动系统90、发动机输入转矩命令、变速器10的转矩转换离合器C1 70,C2 62,C3 73,C4 75的离合转矩;和第一和第二电机56和72的各自转矩命令。TCM17可操作连接到液压控制回路42并提供各种功能,包括监视各种液压传感装置(未示)并产生和通信控制信号到各种螺线管(未示)来控制液压力开关并控制包含在液压控制回路42中的阀。

ECM23可操作连接到发动机14,并具有从传感器获得数据、在多个非连续线上控制发动机14的致动器的功能,简化显示为接合双向界面电缆35。ECM23从HCP5接收到输入转矩命令。ECM23确定实际发动机输入转矩TI,基于发动机速度和负载在该点及时提供给变速器10,其与HCP5进行通信。ECM23监视从旋转传感器11的输入来决定发动机对于输入轴12的输入速度,这将转换为变速器输入速度NI。ECM23监视从传感器(未示)的输入来决定其他发动机操作参数的状态,包括,多方面压力、发动机冷却温度,环境空气温度和压力。发动机负载可以决定,例如从多方面压力或者可以替换的,监视对于加速踏板113的输入。ECM23产生和通信信号来控制发动机致动器,包括,例如燃油喷射器、燃烧模式和节气门控制模式,这里都没有显示。

TCM17可操作连接到变速器10和监视从传感器(未示)的输入,来确定变速器操作参数的状态。TCM17产生并通信命令信号来控制变速器10,包括控制液压控制回路42。从TCM17到HCP5的输入包括每个离合器的估计离合需求,即C1 70,C2 62,C3 73,C4 75,和旋转输出速度,输出元件64的NO。其他驱动器和传感器可以用于为了控制目的从TCM17到HCP5提供附加信息。TCM17监视从压力开关的输入(未示)和选择性驱动压力控制螺线管(未示)和液压电路42的变速螺线管(未示)来选择性驱动各种离合器C1 70,C2 62,C3 73,C4 75,来实现各种变速操作范围状态,随后进行说明。

BPCM21信号地连接到传感器(未示)来监视ESD74,包括电流和电压参数的状态,来提供指示ESD74的电池到HCP5的参数状态。电池的参数状态优选包括电池充电状态、电池电压、电池温度和可用的电池功率,范围是PBAT-MIN到PBAT-MAX

每个控制模块ECM23、TCM17、TPIM19与BPCM21优选通用数字计算机包括微处理器或者中央处理单元,储存介质包括只读存储器(ROM)、随机储存器(RAM)、电子可编程制度存储器(EPROM)、高速时钟、模数转换(A/D)和数模转换电路(D/A)、输入/输出电路和装置(I/O)和合适的信号和缓冲器电路。每个控制模块都具有系列控制运算算法,包括固有的程序结构和标准储存在储存介质中,并被执行来提供每个计算机的功能。在模块之间的信息转换优选使用LAN6和SPI总线来实现。在预设循环中执行控制算法,这样每个控制算法至少在循环执行一次。储存在稳定的存储装置中的算法被中央处理单元中的阿一个来执行来监视从传感装置而来的输入,并执行控制和诊断程序来通过使用预先设定的标准来控制驱动器的操作。在特定的时间间隔进行循环,例如在动力传动系统操作过程中每3.125、6.25、12.5、25和100毫秒。可以替换的,算法可以相应与结果的出现来执行。

示例性动力传动系统可以在许多工作档位中之一选择操作,可以描述为发动机状态,包括发动机开动状态(‘ON’)和发动机关闭状态(‘OFF’),变速器状态包括多个固定固定档位和持续可以变化的操作模式,下面将结合表1来说明。

表1

 

种类发动机状态变速器工作档位状态          采用的离合器MI_Eng_OffMI_Eng_OnFG1FG2      OFFONONON EVT模式IEVT模式I固定传动比1固定传动比2C1 70C1 70C1 70   C4 75C1 70   C2 62

 

MII_Eng_OffMII_Eng_OnFG3FG4       OFFONONON EVT模式IIEVT模式II固定传动比3固定传动比4C2 62C2 62C2 62    C4 75C2 62    C3 73

每个变速器工作档位状态都在表中进行了说明,并指出了哪个离合器C170,C2 62,C3 73,C4 75应用于哪个工作档位状态。第一可变持续模式,即EVT模式I或者MI,通过应用离合器C1 70来选择,为了将第三行星齿轮装置28的外部齿轮元件“置地”。发动机状态可以是ON(MI-Eng-On)或者OFF(MI-Eng-Off)。第二持续可变模式,即EVT模式II或者MII,通过应用离合器C2 62来选择,仅仅连接轴60到第三行星齿轮装置28的支架,发动机状态可以是ON(MII-Eng-On)或者OFF(MII-Eng-Off)。为了这里描述的目的,当发动机状态是OFF,发动机转速等于每分钟零转(RPM),即发动机曲轴并不旋转。固定档位提供变速器10的输入火热输出速度的固定比率操作,即实现NI/NO。第一固定档位(‘FG1’)通过应用离合器C1 70,C4 75来选择。第二固定档位(‘FG2’)通过应用离合器C1 70,C2 62来选择。第三固定档位(‘FG3’)通过应用离合器C2 62和C4 75来选择。第四固定档位(‘FG4’)通过应用离合器C2 62和C3 73来选择。由于在行星齿轮24、26、和28中减小了齿轮比随着增加固定档位,输入和输出的固定档位也增加。第一和第二电机56和72的转速NA和NB各自依赖于由离合器设定的机构的内部旋转,并和输入轴12处测量的输入速度成比例。

相应与通过使用者界面13获得的加速踏板113和制动踏板112的操作者输入,HCP5和一个或者多个其他控制模式决定命令输出转矩TCMD,该转矩希望能达到操作者转矩所需,TO-REQ,在输出64执行并传送到动力传动装置90。最终车辆加速被其他因素来影响包括,例如,道路负载、道路级别和车辆总重。操作范围状态对于变速器10基于动力传动系统的多种操作特征来决定的。这包括操作者转矩需要,如前所述通过加速踏板113和制动踏板112来和操作者界面13进行通信。操作范围状态可以在动力传动系统转矩需求上预先指出,该需求是由在电能产生模式中操作第一和第二电机56和72的命令或者在转矩再生模式中产生的。操作模式状态可以由最优化基于操作者对于功率、电池充电状态、发动机14和第一和第二电机56和72的能量效率决定最优决定最优系统的算法或者程序来决定。控制系统基于最优化的程序管理从发动机14和第一和第二电机56和72而来的转矩输出,因此系统效率得以优化并因此来管理燃油经济性和充电。而且,可以基于系统或零部件的故障来确定操作。HCP5监视转矩产生装置,并决定为了满足操作者转矩需要来实现期望的输出转矩而从变速器10的功率输出,从上述的说明应当明确,ESD74与第一和第二电机56和72之间为其间的功率流电动可操作结合。进一步,发动机14,第一和第二电机56和72,和机电变速器10可机械操作结合来在其间传送能量来对于输出装置64产生动力流。

附图4显示了控制在举例变速器中的液压流的控制回路42的示意图。主液压泵88从发动机14与输入轴12分离,由TPIM19控制的辅助泵110通过阀40向液压控制回路42提供加压流体。辅助泵110优选包括合适大小和容量的的电动泵来在的时候提供足够的加压流体进入到液压控制回路42。液压控制回路42选择性的将液压压力分配到多个装置,包括转矩传送离合器C1 70,C2 62,C373,C4 75,对于第一和第二电机56和72(未示)的活性冷却回路,和通过通道142、144(未示)冷却和润滑变速器10的基础冷却回路。如前面所述,TCM17选择包括各种压力控制螺线管(‘PCS’)PCS1 108、PCS2 114、PCS3 112、PCS4116和螺线管控制流体管理阀、X阀119和Y阀121的液压流控制装置,驱动各种离合器来变速器操作范围内的一种状态。液压控制回路42分别通过管路122,124,126和128中的液体连接到压力开关PS1,PS2,PS3和PS4。压力控制螺线管PCS1 108具有通常高的控制位置和可操作来在液压回路中通过与可控压力调整器107和短管阀109互交作用来修正流体压力的数量。可控压力调整器107和短管阀109与PCS1 108互相作用来在压力范围中控制在液压回路42中的流体压力,并可能提供液压控制回路42的附加功能。压力控制螺线管PCS3112具有通常高控制位置和可以流体连接到短管阀113并在驱动的时候影响穿过的流体。短管阀113通过通道126流体连接到压力开关PS3。压力控制螺线管PCS2 114有通常高控制位置和可以流体连接到短管阀115并在驱动的时候影响穿过的流体。短管阀115通过通道124流体连接到压力开关PS2。压力控制螺线管PCS4 116有通常的控制位置和可以流体连接到短管阀117并在驱动的时候影响穿过的流体。短管阀117通过通道128流体连接到压力开关PS4。

在举例系统中,X阀119和Y阀121每个都包括由螺线管118和120各自分别控制的流体管理阀,并控制高(‘1’)和低(‘0’)的状态。控制状态涉及到每个阀的位置,在液压控制回路42和变速器10中控制流体流向不同的装置。按照随后所述的那样,依靠流体输入源X阀119可以操作来指引压力流体到离合器C3 73和C4 75并通过流体通道136、138、144、142各自来冷却第一和第二电机56和72的转子。按照随后所述的那样,依靠流体输入源Y阀121可操作来指引压力流体到离合器C1 70和C2 62并各自通过流体通道132、134。Y阀121通过通道122流体连接到压力开关PS1。

液压控制回路42包括基础控制回路来提供液压流来控制冷却第一和第二电机56和72的转子的流体。基础冷却回路包括流体管道从阀140直接到流体节流器,流体节流器通向流体通道144并通向第一电机56的转子的基础冷却回路,和通向节流器,该节流器通向流体通道142同向第二电机72的转子的基础冷却回路。第一电机和第二电机56、72的转子的活性冷却受到压力控制螺线管PCS2 114、PCS3 112、PCS4 116和螺线管控制的流体管理阀X阀119和Y阀121的选择性驱动影响,其引导液压流绕选择的转子流动并允许热量转移进行,主要通过传导。

实现举例液压控制回路42来在一个变速器工作档位状态内控制变速器10的操作控制的举例逻辑图表参考下面的表2。

表2

 

X阀逻辑Y阀逻辑PCS1PCS2PCS3PCS4变速器工作档位状态      No锁C2锁通常高通常高通常高通常低EVT模式I00线调制MG-B转子冷却    C1MG-A转子冷却    EVT模式II01线调制C2MG-B转子冷却    MG-A转子冷却    低范围10线调制C2C1C4低范围11线调制C2C3C4

低档位设定为包括一个第一连续变化模式和第一和第二固定档位的变速器工作档位状态。高档位设定为包括一个第二连续变化模式和第三和第四固定档位的变速器工作档位状态。X阀119和Y阀121和螺线管PCS2 112、PCS3 114、PCS4 116的驱动有利于液压流驱动离合器C1 70,C2 63,C3 73,C4 75,并提供第一电机和第二电机56、72的定子的冷却。

在操作中,变速器工作档位状态,即一个固定档位和连续变化模式操作,被基于动力传动系统的各种操作特征来选择为举例变速器10。这包括操作者转矩需要,如前面所述的通过输入到UI13来进行联系。此外,输出转矩的命令在外部环境下预测,包括,例如,道路等级、道路表面条件或者风力载荷。工作档位状态可以在由控制模块命令来在电能产生模式或者转矩产生模式中操作电机引起的传动转矩命令来进行预测。工作档位状态可以通过基于操作者转矩需要、电池充电状态、发动机14能量效率和第一、第二电机56、72可操作来确定最佳系统效率的优化法则和程序来确定。控制系统基于执行最优化程序的结果来管理从发动机14和第一、第二电机56、72的输入转矩,系统优化发生在改进燃油经济性和管理电池充电。进一步,操作可以基于在部件或者系统中的故障来确定。

如本领域技术人员所知,任何控制系统包括反应时间。传动系操作点的变化是由控制信号的变化来驱动的,包括为了实现车辆操作所需要的传动系的各种部件的速度和转矩。这些控制信号作用于传动系的各种部件并根据他们的各自反应时间在每个中产生反应。应用于混合传动系,在表示新的转矩需求的控制信号中的任何变化,例如,由在TO_CMD中变化驱动的或者为了执行变速器换挡所需要的,为了可对于各自的输入转矩执行所需变化在每个起作用的转矩产生装置或者任何起作用的离合器中产生反应。由发动机提供的输入转矩的变化由设定发动机产生转矩的发动机转矩需求来控制。例如通过ECM来进行控制。现有技术所知在发动机中对于发动机的转矩需求的变化的反应时间受到很多因素的影响,特别是,主要依赖所应用的发动机的细节以及所使用的燃烧方式。在很多环境下,发动机对于转矩所需变化的反应时间对于混合驱动系统而言是最长的反应时间。当前的离合器容量或者即时离合器转矩容量受到离合器控制系统的控制,例如,液压控制系统利用液压来选择性充满离合器。现有技术中所知在变速器中的对于指令容量的变化的反应时间受到很多因素的影响,包括设计的诸如螺线管的控制装置和离合器充满时间的反应时间。在很多环境下,变速器对于指令容量的变化的反应时间要比发动机对于转矩所需变化的反应时间短。在电机中对于所需转矩变化的反应时间包括激活任何需要的开关、延时开关或者控制装置,以及给电机施加电压或者去除电压,具有在所应用的电能中的变化。在很多环境下,电机对于所需转矩的反应时间要比变速器的反应时间或者发动机对于控制命令的反应时间短。

如上面所述,PLINE是有用的用于说明由液压控制系统执行的需求的重要的一项,例如变速器离合器的操作。但是,PLINE经常不是直接测量的。附图5图表显示了根据这里公开的示例性主压力评估模式可以估计PLINE。如上所述,诸多因素影响PLINE,包括从泵进入到液压通道的有效流体,和从液压控制系统中消耗液压压力的各种装置。有效流体,表示由所有的输送给液压控制系统的液压泵产生的流体,可以用很多的方式来测量或者估计,包括流量计或者通过表示流体的运算法则模型,包括泵速度、TOIL、和对于泵的反馈压力。模块产生估计的PLINE或者PLINEEST。此外,在PLINEEST的确定中,PLINEEST反馈到模块来包括由PLINE引起的反馈压力。这样,影响PLINE的因素可以模拟产生液压控制系统的控制中使用的PLINEEST

附图6图表显示了示例性可用的管线压力评估模块,可以描述根据这里公开的由给定的现有车辆操作的液压控制系统产生的最大可用压力。在上面所述的管线压力评估模块的类似操作中,最大可用管线压力评估模块输入说明结果PLINE的说明性的各种因素并模拟估计的最大可用压力或者PMAX。最大流体或者可以由泵转移的最大流体在主泵的情况下是发动机速度的因素,在辅助泵的情况下是最大辅助泵速度的因素。最大辅助泵速度可以是一系列数据或者可以包括诸如有效电池功率的泵操作参数。这样,影响PLINE的因素可被模拟来产生PMAX用于液压控制系统的控制。

因为PLINE直接影响离合器转矩容量,PLINEEST和PMAX可以用于计算离合器转矩容量即时最小值和最大值以及离合器转矩容量预测最小值和最大值,可以在给定的当前条件下各自命令测量最大主压力,通过监视影响液压控制系统操作的因素,液压控制系统操作的离合器操作容量可以被确定或者预先预测。

如上所述,在这里描述的方法中使用的离合器,包括离合器控制策略,其目标是在操作中很少或者没有离合器滑动。为了实现这些离合器控制策略,离合器的容量保持大于通过所使用的离合器传送的转矩。这里公开了通过使用估计离合器反应转矩最大容量来设定可以用于离合器的输入转矩的范围来保持离合器反应转矩超过通过离合器传送的转矩的方法。

避免离合器滑动需要确定、估计或者预测离合器转矩容量实际的最大值和最小值来和通过离合器传送的转矩进行比较。在示例性动力传动系统的稳定操作下,通过离合器传送的转矩在结合发动机和电机或者机器来产生。如上所述,发动机和电机的反应时间是不一样的,影响通过锁止离合器传送的转矩的变化的控制策略可以反应这些不同。例如,对于电机转矩需求变化可以比变速器对于变化的反应更快。为了保持有电机低于离合器转矩容量的最小值和最大值导致的TA,和限制抑制的TA小于离合器转矩容量即时最小值和最大值可以有效避免滑动。相反地,离合器转矩容量即时最小和最大值中的变化来提高容量值到离合器转矩容量预定的最小和最大值可以比发动机反应与转矩需求的变化更快。结果,TI不需要由离合器转矩容量即时最小和最大值来人为进行限制,如离合器容量可以比TI变化快。这些相互的反应时间可以用于管理TI和通过离合器传递的总的转矩。如上所述,PLINEEST和PMAX可以基于液压泵的操作和通过分析液压控制系统的操作来进行估计。从这些数值,离合器转矩容量即时最小和最大值和转矩容量预定最小值和最大值可以产生。使用离合器转矩容量预知最小和最大值作为对于TI的限定因素,优选的输入转矩或者TI_DES可以被确定来满足TO_CMD。结果,TI和离合器扭容量即时最小值和最大值可以改变到新的的转矩需求,在避免离合器滑动的时候变化TI

基于离合器转矩容量的预测,在离合器转矩容量预测的最小和最大值中的错误可以发生,但是任何将导致通过离合器传送的转矩超出离合器转矩容量的实际最小和最大值的错误可以通过电机操作抵消超出发动机转矩来进行补偿。由于电机的反应时间相对于其他涉及的装置的反应时间短,以及因为控制系统通过变化继续监视离合器转矩容量即时最小和最大值,电机可以用于作为反馈机构,平衡TI和离合器转矩量即时最小和最大值,通过对于动力传动系统中的变化来避免滑动。

附图7图表显示了在动力传动系统操作中的举例变化,显示了根据这里公开的离合器容量与发动机速度之间的关系。图表的两个部分采用同样的时间表来表示。图表的顶部部分表示在一个时间段内的液压管线压力。因为,如上所述,管线压力直接与转矩容量有关,相同的数据点可以用于显示通过在时间段内传送的转矩。此外,按照所显示的应当理解,离合器容量可以表示为正的方向也可以表示为负的方向,如在附图7中的最小和最大曲线表示的那样。在图表的底部,发动机速度NI在与顶部部分中的主压力变化相同的时间表来进行说明。如上所述并与附图7中所示的举例数据一直,主压力泵由发动机直接驱动。结果,在NI中的增加,保持影响当前管线压力的因素,诸如管线压力泵流体调整器和从液压控制系统常量提供的函数中得到,显示了在PLINE中的相对时间延迟增加表明增加主液压泵速度的作用。返回到图表的顶部,PLINE可以直接转化为离合器转矩容量即时最小和最大值来表明可以通过应用的离合器来当前应用的转矩。PMAX,描述了如果在举例液压控制系统中的两个泵在其最高设置操作那么最大PLINE可以当前实现,可以直接转换为离合器转矩容量预测最小和最的大值。如在举例数据中所示,其中液压管线压力等于1600Kpa,液压控制系统通常施加一个限制的最大主压力来避免对于系统的损害。在一个选择的时间,显示了点A-D。B显示了举例离合器转矩容量预测最大值,如基于分析相关输入的估计。如由热油管线和冷油管线所示,最大可以实现的主压力直接受到给定发动机速度的液压油的温度影响。点A和C显示了离合器转矩容量预测最大值,该值将依靠油温度的影响存在。离合器转矩容量预测的最小和最大值,如上所述,被用于设定TI_DES。但是应当理解在复合计算机模块中或者计算法则中可以从实际值偏离。点D显示了对于给定的实施例的离合器转矩容量的实际最大值,其受到一些因素的影响比由B点表示的预测的值小。在这样的条件下,离合器转矩容量预测最大值大于离合器转矩容量实际最大值,离合器转矩容量预测最大值,用于作为输入因素来确定TI_DES,所以产生了估计转矩容量大于实际上在该点的量。但是如上面所指出的,当前离合器容量通常被追查为离合器转矩容量即时最小很最大值,并在离合器转矩容量预测最大值被命令的情况下,通过附加液压管线压力增加到满足预测的最大值,离合器转矩容量即时最大值将消除差异并给电机提供快速反应时间来抵消由于在点B的评估的错误施加的任何超过TI

附图8图表显示了根据这里公开的调整发动机转矩和最大可用离合器转矩容量的举例信息流。示例性传动控制系统300包括变速器容量模块302,策略最优化模块304,换挡执行模块306、战术优化和控制模块308、ECM23、输出和电机转矩确定模式312。输入转矩确定模块314、速度控制模块316。变速器容量模块302接收关于液压控制系统的操作的信息,并将和液压有关的信息转换为可用来操作离合器进入离合器容量。各种输入可以用于用于估计可用的和最大主压力。在一个特殊的举例实施例中,以PLINEEST和PMAX形式的的主压力信息可以单独计算,结合附图5和6如上所述。在另一实施例中,关于附图1的输入可以被监测来估计在液压控制系统中的情况。例如,输入可以包括关于液压控制系统提供的功能的流体信息、以NI的形式的关于泵速度的信息,主泵的速度或者辅助泵的速度、NAUX、和液压油温度。关于泵速度的输入可以用于计算进入泵的流体。在替换例子中,泵流体或者进入液压控制系统的液压流可以直接测量或者从可用的测量来计算。由这些输入,变速器容量模块302估计最大和当前液压主压力,可用于离合器操作和提供离合器转矩容量即时最小和最小值和离合器转矩容量预测的最小和最大值。策略优化模块304接收关于动力传动系统的当前操作的信息,在本例子中,NO和TO_COM,并产生NI_DES,说明预期的发动机速度达到TO_COM和在现有技术中已知的关于发动机操作到需要转矩的操作因素。换挡操作模块306接收NI_DES作为输入,并确定基于NI_DES影响NI的预期转换。为了实现这种预期的转换,转换执行模块306确定NI轮廓,在转换中的NI预期轮廓。为了实现根据NI轮廓变换到NI,变化必须命令到发动机。如上所述,在发动机操作中对于发动机的变化包括反应时间。公开了使用引导时间来校准发动机和电机之间的差距。通过使用引导时间来调整发动机命令的发布到预期的实际发动机变化,发动机命令和电机命令可以同步来提供同时的或者同时的对于TO变化。为了基于引导时间来影响这些变化,引导NI_DOT轮廓由换挡执行模块306来确定,显示预期的NI变化包括引导时间调整发动机命令到预期实际对于NI的变化。换挡执行模块通常确定实际NI_DOT。战术优化和控制模块308接收输入包括TO_CMD、离合器转矩容量预测最小和最大、和引导NI_DOT轮廓和确定TI_DES,或者实现输入需要的当前转矩命令。因为,如上所述,发动机需要的时间要比离合器反应与命令中的变化时间长,策略优化和控制模块308可以利用离合器转矩容量预测最小和最大来替换离合器转矩容量即时最小和最大来基于离合器限制抑制发动机操作,因为变速器可以反应并增加离合器容量要比发动机可以增加TI快,因此,允许发动机在TI范围到任何时间都可以提供的最大可用离合器反应转矩范围内操作。ECM 23接收TI_DES并发布控制命令到发动机,导致TE_ACTUAL,由发动机产生的实际转矩。输入转矩确定模块314监测影响发动机性能的多个因素并估计TE_ACTUAL,其中TI_ACTUAL或者实际从发动机到变速器的输入转矩等于TE_ACTUAL减去任何损失。速度控制模块316接收NI模块作为输入并输出电机封闭环控制,TA_CL和TB_CL,基于速度误差和离合器速度误差。输出和马达转矩确定模块312接收为输入TI_ACTUAL、NI_DOT、离合器转矩容量即时最小和最大值、TA_CL和TB_CL,并产生对于电机的命令以TA_CMD和TB_CMD的形式。输出和马达转矩确定模块312利用离合器转矩容量即时最小和最大值来代替离合器转矩容量预测最小和最大值来基于离合器限制来限制电机操作,因为电机可以反应并增加通过离合器传送的转矩比离合器反应与增加离合器容量的命令更快。这样,电机可以操作在离合器当前容量中而不会超出离合器转矩容量并引起滑动。这样,举例控制系统300利用描述当前离合器容量和最大可用离合器容量的信息来管理在动力传动系统中应用的转矩。

这里公开的内容说明了特定的优选实施例。进一步的修正和替换可以基于阅读和理解说明书来进行。因此,这里公开的内容并不是限制在特定的公开来作为最佳模式的预期来实现这些公开的实施例,但是这些公开的内容将包括所有落入权利要求的范围中的所有的实施例。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号