首页> 中国专利> 引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元

引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元

摘要

本发明涉及引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元。这是一种工业方法,它能够通过转化气体分子以形成例如清洁气体等新化合物来改变例如内燃机、工厂烟囱等任何来源的温室气体的化学组成。这一方法可以通过利用固体颗粒捕集器的分子转化处理转化单元进行,所述转化单元由产生等离子体射流的等离子体转化室(II)和收集固体颗粒的静电过滤器(III)组成。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-02-27

    授权

    授权

  • 2010-02-10

    实质审查的生效

    实质审查的生效

  • 2009-12-16

    公开

    公开

说明书

技术领域

本发明涉及一种通过热等离子体技术转化气体分子的方法,它是一种能够改变作为废气从内燃机、工厂烟囱等排放的温室气体的化学组成的工业方法。这种转化方法使气体分子降解或分解并形成新物质,例如,二氧化碳(CO2)为温室气体的主要成分之一,它通过这种方法得到的转化产物为固体碳和气态氧(O2)。利用固体颗粒捕集器的分子转化装置由等离子体燃烧室和供收集固体颗粒的静电过滤器组成。所述等离子体燃烧室具有等离子体炬(plasma torch),其产生通过阴极与阳极之间的放电形成的等离子体射流或电离气体。

背景技术

现今,人类所面临的最严峻的问题之一是环境污染,这主要是由人类和工业活动引起。矿物燃料燃烧(例如汽油、煤和天然气)为地球大气中二氧化碳(CO2)增加的主要原因之一。每年会释放约240亿吨CO2,相当于每年释放65亿吨碳。2007年1月,夏威夷的莫纳罗亚天文台(Mauna LoaObservatory,Hawaii)测量发现,大气中二氧化碳的浓度为0.0383体积%(383ppm/v):超过到1950年时所观测的值的平均值105ppm/v或38%。地球大气的平均温度因称为温室气体的某些气态分子(例如CO2)的物理和化学特性而保持恒定。如果此类气体的浓度改变,那么地球温度也将改变。引起全球变暖的主要温室气体有:水蒸汽,其占约36到70%;二氧化碳(CO2),其占约9到26%;甲烷(CH4),其占约4到9%;和最后,臭氧(O3),其占约3到7%。

一氧化二氮(N2O)和如氯氟碳化物等CFC(CFxClx)为大气中浓度较低的其它温室气体。在严峻的情况面前,全世界所有的研究人员都在寻求能控制和截留温室气体排放的技术。专利文献PI8100960-7、PI9500855-1、PI0205677-1、PI0301592-0、PI0305789-5、PI0317946-0、JP2003326155和PI0604646-0中描述了吸收大气中的二氧化碳气体的设备和方法。目前主要的技术是寻找能通过改进化学反应过程解决问题的方法。然而,应注意,还没有使用旨在转化温室气体分子并产生新物质的热等离子体技术的工业生产设备。有关本发明的信息可以访问http.//www.cmdl.noaa.gov/ccgg/trends/,(01/18/2007)以及“Shukman,David(14March 2006).Sharp rise in CO2,levelsrecorded.BBC News”。

关于热等离子体技术,有必要考虑产生等离子体的不同方式,并且任何此类选择都视应用的目的而定。最常用的方法为电感耦合等离子体(inductivecoupling plasma,ICP)和直流电弧等离子体(直流)。射频产生ICP,它主要用于分析目的。ICP由气流(通常为氩气)形成,所述气流横穿具有由射频发生器系统馈入的感应线圈的区域。感应线圈包含2或4匝水内冷线圈。这类等离子体也用于化学废液的处理。将废液注入温度较高的炬管中心,而且这有助于使其受到完全破坏。

直流电弧等离子体:当在一些负或正电荷载流子存在下,气体在一定电位差和高电流下流过两个电极之间时,在电极间产生电弧,从而形成直流(DC)等离子体或交流(AC)等离子体。所述电弧可能为自由电弧(电弧焊或电弧炉)或约束电弧(在等离子体炬中)。在自由电弧中,电弧与环境气体之间的热交换过程是通过自然对流发生。在约束电弧中,热交换是通过强制对流发生,这比自然对流有效得多。归因于所述有效性,约束电弧的温度(20.000K)比自由电弧的温度(3000K)高得多。尽管在本方法中可能应用不同类型的等离子体产生方法,但将使用直流电弧等离子体系统来予以描述。

此项技术的当前状态可以参考例如以下相关文献:

1.CUBAS,A.L.V.;CARASEC,E.R.;DEBACHER,N.A.:SOUZA,I.G.,Development of a DC-Plasma Torch for Decomposition on OrganochlorineCompounds.Journal of the Brazilian Chemical Society,Br.,第16卷,第3B期,第531-534页,2005年。

2.CUBAS,A.L.V.;CARASEC,E.R;DEBACHER,N.A.;SOUZA,I.G.Use of Solid Phase Microextraction to Monitor gases Resulting from ThermalPlasma Pyrolysis.Chromatographia,Germany,第60卷,第1/2期,第85-88页,2004年。

3.STALEY,L.Site Demonstration of Retech Plasma Centrifugal Furnace:The Use of Plasma to Vitrify Contaminated Soil.Air & management Association,第42卷,第10期,第1372-1376页,1992年。

4.BONIZZONI,G.:VASSALO,E.Plasma Physics and Technology:Industrial Applications.Vaccum.第64卷,第327-336页,2002年1月。

5.BbULOS,M.;FAUCHAIS,P.;PFENDER,E.Fundamentals andApplications.Thermal plasma,第1卷,1995年。

6.IWAO,T.;INABA T.Treatment of Waste by dc Arc Discharge Plasma.IEEE Transactions on Dielectrics and Electrical Insulation,第7卷,第5期,第684-692页,2000年10月。

发明内容

温室气体的分子转化方法是建立在通过热等离子体转化温室物质(分子)的基础上。此类分子的转化将产生物理-化学物质,它完全不同于初始物质,诸如固体碳和非温室气体。

转化过程是通过等离子体炬、等离子体转化室和静电过滤器进行。为了能更好地予以解释,使用作为引起温室效应的主要成分之一的二氧化碳(CO2)为例,其通过本方法得到的转化产物为固体碳(C)和气态氧(O2)。利用固体颗粒捕集器的分子转化装置由等离子体转化室和收集固体颗粒的静电过滤器组成。等离子体转化室装备有等离子体炬,它产生通过阴极与阳极之间的放电形成的等离子体射流或电离气体。

温室气体的热转化方法的操作设置如下。转化室装备有等离子体电弧炬,其在约10,000K的温度下产生通过阴极与阳极之间的放电形成的等离子体射流或电离气体。等离子体炬与高电流电源连接,所述电源的容量根据待电离气体或气体混合物而变化。所述设备具有固体颗粒收集过滤器。由热等离子体进行的分子转化过程遵循两个步骤。在第一个步骤中,由电离气体(等离子体)产生的高温破坏分子的化学键并形成高反应性且不稳定的自由基;在第二个步骤中,所述自由基在气态混合物冷却期间自发重组并以熵有利的过程形成分子量较低的新物质。

附图说明

为补充本发明的表述,并且为了能更容易地理解本发明的特征,提供图1(此图仅用于说明的目的)。图1绘示利用固体颗粒捕集器的温室气体分子转化装置的展开图,所述装置由以下组件构成:等离子体炬(I);等离子体转化室(II);静电过滤器(III);和高电流电源(IV)。

具体实施方式

所需供实施“温室气体的热转化方法”的设备含有用于向所述方法提供能量的高电流电源(IV);用于混合和高温转化排出气体的等离子体炬(II)和等离子体转化室(II);以及分离气态混合物与固体颗粒的静电过滤器(III)。

高电流电源(IV)具有以下特征。其提供10KW到20KW的功率,并且具有高频电子点火器来产生电弧以便形成等离子体。

等离子体转化可直接和间接进行。在直接方式中,将温室气体与炬管维持气体一起引入电极之间。在间接方式中,将温室气体与转化室中的等离子体射流充分混合。在本专利中,将描述间接方法。在本文中,等离子体转化室(II)是由非转移弧式等离子体炬(I)和直流式管状转化室(7)形成。等离子体转化室(II)为分子转化的主要组件。高温分解或分子转化机制都是在所述转化室中发生,并且为了得到较高效率,有必要使进入室(1)中的气体与等离子体射流充分混合。为了能更好地观察各组件(I、II、III和IV),图1提供温室气体分子转化单元的展开图。非转移弧式直流等离子体炬(I)具有充当阴极的中央钨电极(电子发射体),以及充当电子收集器的黄铜体(5)(阳极)。炬管须为水冷的。当例如氩气、氮气和空气等气体在某一电位差和高电流下流过两个电极之间时,形成等离子体。电弧最初是由产生第一电荷载流子的高频电子点火器(IV)产生。由高电压电源(IV)产生的高势能维持REED涡流或等离子体射流,通过两个电极之间的气流使其稳定化,所述气流经电离以在炬管(I)出口处形成前述等离子体射流。这些炬管可以在适宜环境中达到约10,000K的温度,从而能分子转化任何物质。

直流式管状转化室(II)包含具有侧向进气管的周围管(surrounding tube)(3)以及中央火焰管(flame tube)(7)。周围管(3)是由钢制成,并且其形成转化室(II)的实体。火焰管(7)为一个圆筒,其包含在背部的自由开口(8),以及在周围管(3)内部支撑其自身的浅突起(9)。炬管(I)须拧入火焰管(7)的前面。火焰管是一种高耐热性钢管(7),它需要完全被周围管包围。火焰管(7)恰好放入由管(3)包围的罩壳中央。火焰管(7)具有一系列沿管体排列的孔,这些孔功能相同并且彼此直径不同。当穿过所述转化室时,气体形成层流;但当气体透过不同孔(10)时,其在进入火焰室(7)后立即变为湍流。有目的地激发湍流以确保得到气体与REED涡流或等离子体射流的优良混合物。

等离子体转化室(II)耦合至静电过滤器(III)。分子转化将产生例如氧气和氮气等一些气体以及例如碳和硫等固体颗粒。由此,与市面上有售的静电过滤器类似,所述静电过滤器将固体颗粒(由CO2和SOx分解产生的碳和硫)从气流中去除。静电过滤器是最适宜的气体出口,这是因为其对气流具有最小阻力,并且能够有效截留微粉化材料。截留在过滤器(III)中的固体颗粒将被移到放于此过滤器(III)底部的容器(11)中。在出口(2)处,排出的气体应不含温室气体和固体颗粒。

所述单元的构造形式使得能够将其安装于发生源附近。此外,所述单元提供一种制造其元件的简易方法。这些特征使其能用于大规模工业应用,从而允许减少例如二氧化碳(引起全球变暖的主要温室气体之一)等污染气体。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号