首页> 中国专利> 一种磁流体的制备方法及磁流体光开关的应用

一种磁流体的制备方法及磁流体光开关的应用

摘要

一种磁流体的制备方法,其特征在于采用如下步骤:①配置成A溶液,A溶液为摩尔浓度为5~10mol/L的NaOH溶液;②配置成B溶液,B溶液为0.1~0.2mol/L的FeSO

著录项

  • 公开/公告号CN102110509A

    专利类型发明专利

  • 公开/公告日2011-06-29

    原文格式PDF

  • 申请/专利权人 宁波大学;

    申请/专利号CN201010588116.3

  • 发明设计人 王军;夏肆华;张群兵;段红艳;

    申请日2010-12-03

  • 分类号H01F1/44;H01F41/00;G02B26/02;

  • 代理机构宁波诚源专利事务所有限公司;

  • 代理人袁忠卫

  • 地址 315211 浙江省宁波市风华路818号宁波大学理学院

  • 入库时间 2023-12-18 02:43:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-01-18

    未缴年费专利权终止 IPC(主分类):H01F1/44 授权公告日:20130109 终止日期:20151203 申请日:20101203

    专利权的终止

  • 2013-01-09

    授权

    授权

  • 2011-08-10

    实质审查的生效 IPC(主分类):H01F1/44 申请日:20101203

    实质审查的生效

  • 2011-06-29

    公开

    公开

说明书

技术领域

本发明涉及一种磁流体的制备方法,本发明还涉及磁流体光开关的应用。

背景技术

本发明涉及磁流体的制备,以及基于磁流体的简易光学开关的制作。特别是通过调整参数以缩短光开关的开关时间。

自从上世纪六十年代磁流体被合成以来,磁流体因其同时具有磁响应性和液体的双重性质,已经被广泛运用到许多领域中,如磁流体密封,润滑剂,冷却剂,核磁共振的造影剂等等。

研究发现对磁流体薄膜施加外磁场时,薄膜内的磁性颗粒会沿着磁场方向定向排列成一维链状结构,而这些规则排列的磁性颗粒可以通过控制磁场的大小以及方向而实施控制。当一束光分别打在施加磁场前后的磁流体薄膜上的时候,磁流体薄膜的折射率会发生显著变化,从而使透射光和折射光的强度发生改变,利用磁流体的这个特点,我们设想可以设计一种基于磁流体的简易光学开关,这种开关可以通过对磁场的控制实现对光的控制。

《APPLIED PHYSICS LETTERS》(2004年,第85卷,5592页)报道了一种基于磁流体的光开关,文献中设计的开关通过调节外磁场改变磁流体的折射率从而使通过磁流体薄膜的透射光强和折射光强改变,起到调节光路的作用。不过文献中的开关时间需较长时间(需要2-3s)这样的开关时间就限制了这一类光开关在实际中的应用。

本发明中,我们设计了一种基于煤油基磁流体的光学开关,通过设计光路,我们使得通过开关的光强从零开始增加,并通过调节磁流体的浓度和外磁场的强度以减少光开关的开关时间,使得开关时间在0.05s左右,从而拓展了这一类开关在实际中的应用。

发明中我们利用偏振片先将光路消光,使光电接收器端的光强为零,然后在磁流体薄膜附近施加磁场,发现随着磁场的变化,光强从开始随磁场变化。这就是简易的磁流体薄膜的光学开关的原理。

发明内容

本发明所要解决的技术问题是针对上述的技术现状而提供一种简易的磁流体的制备方法。

本发明所要解决的又一个技术问题是提供一种磁流体光开关的应用。应用于光学开关装置,这种装置基于磁流体在外磁场下对入射光的双折射效应,通过调节光路使光强从零开始变化,并选用发明中制备的煤油基磁流体,因其较小的粘滞系数和较好的磁响应性,极大的缩减了光开关的开关时间。

本发明解决上述技术问题所采用的技术方案为:一种磁流体的制备方法,其特征在于采用如下步骤:

①配置成A溶液,A溶液为摩尔浓度为5~10mol/L的NaOH溶液;

②配置成B溶液,B溶液为0.1~0.2mol/L的FeSO4.7H2O和0.2~0.4mol/L的FeCl3.6H2O的蒸馏水混合溶液;

③搅拌的同时将A溶液加入到B溶液中,滴加的过程中温度保持在60~90℃,进行沉淀,A溶液和B溶液体积比为5∶5~5∶7;

④沉淀后,将油酸加入到B溶液中,在这个过程中温度保持在60~90℃,进行包覆,其中油酸和B溶液体积比为1∶11~1∶14;

⑤将包覆后的物质在60~80℃下真空干燥6~10小时,干燥后与煤油混合得到的磁流体,该磁流体体积浓度为0.8%~3%。

磁流体光开关的应用,其特征在于包括磁场及位于该磁场中的磁流体。作为优选有如下几种:

所述的磁流体体积浓度为0.8%时,所述的磁场强度大于等于0.12T。

所述的磁流体体积浓度为3%时,所述的磁场强度为0.015T。

所述的磁流体体积浓度为0.8%时,所述的磁场强度为0.8T。

所述的磁流体体积浓度为3%时,所述的磁场强度为0.8T。

与现有技术相比,本发明的优点在于:本发明是利用煤油基磁流体的双折射效应来起到开关效应,利用双折射效应我们使光强从零开始增加,使我们的开关消光比和可靠性都非常高,经过多次实验,我们调节适当的参数也得到了较为理想的开关时间。

附图说明

图1是合成的四氧化三铁纳米颗粒的XRD图。

图2是合成的四氧化三铁纳米颗粒的SEM图。

图3是磁流体薄膜的示意图。

图4光学测试装置。

图5是不同浓度的磁流体的相对透射光强随外磁场的变化。

图6磁流体浓度为0.8vol%的光学开关在0.08T的磁场下的相对透射光强随磁场的变化。

图7磁流体浓度为3vol%的光学开关在0.08T的磁场下的相对透射光强随磁场的变化。

图8磁流体浓度为3vol%的光学开关在0.008T的磁场下的相对透射光强随磁场的变化。

具体实施方式

以下结合附图实施例对本发明作进一步详细描述。

实施例1:煤油基磁流体的合成

将100g NaOH加入到足量的水中,配制成500mL的NaOH溶液。第二种溶液是将0.05mol FeSO4.7H2O和0.1mol FeCl3.6H2O加入到足量的蒸馏水中配制成600ml的溶液,在玻璃棒搅拌的同时将足量的NaOH溶液加入到第二种溶液中,滴加的过程中温度保持在60℃,沉淀过程大概持续20分钟。将50ml油酸加入到含有Fe3O4的溶液中,在这个过程中温度始终保持在60℃,包覆的过程要持续30分钟,将得到的物质在65℃真空干燥10小时,取磁性颗粒按不同比例与煤油混合得到不同浓度的磁流体。其中,油酸与Fe3O4的溶液体积比可以控制在1∶11~1∶14。

实验中发现四氧化三铁颗粒沉积的速度较慢,颗粒生长的尺寸较大,包覆后溶解在煤油中形成的磁流体放置一段时间后,磁性颗粒容易从煤油中沉淀出来。

实施例2:提高NaOH浓度对磁流体的影响

将160g NaOH加入到足量的水中,配制成500mL的NaOH溶液。第二种溶液是将0.05mol FeSO4.7H2O和0.1mol FeCl3.6H2O加入到足量的蒸馏水中配制成600ml的溶液,在玻璃棒搅拌的同时将足量的NaOH溶液加入到第二种溶液中,滴加的过程中温度保持在60℃,沉淀过程大概持续20分钟。将50m1油酸加入到含有Fe3O4的溶液中,在这个过程中温度始终保持在60℃,包覆的过程要持续30分钟,将得到的物质在65℃真空干燥10小时,取磁性颗粒按不同比例与煤油混合得到不同浓度的磁流体。

提高碱的浓度后,颗粒沉积的速度明显加快,很快就能在透明的溶液中出现磁性颗粒,而且颗粒的尺寸也较小,但是颗粒尺寸不均匀。

实施例3:提高铁离子浓度对磁流体的影响

将160g NaOH加入到足量的水中,配制成500mL的NaOH溶液。第二种溶液是将0.1mol FeSO4.7H2O和0.2mol FeCl3.6H2O加入到足量的蒸馏水中配制成600ml的溶液,在玻璃棒搅拌的同时将足量的NaOH溶液加入到第二种溶液中,滴加的过程中温度保持在60℃,沉淀过程大概持续20分钟。将50ml油酸加入到含有Fe3O4的溶液中,在这个过程中温度始终保持在60℃,包覆的过程要持续30分钟,将得到的物质在65℃真空干燥10小时,取磁性颗粒按不同比例与煤油混合得到不同浓度的磁流体。

图1给出了合成的四氧化三铁纳米颗粒的XRD图,图中的峰位与四氧化三铁的标准谱图(JCPDS Card no.19-0629)相符,利用迪拜-谢乐公式可以推算出纳米颗粒的尺寸在14nm左右,这与图2给出的四氧化三铁的SEM图片相符。

实施例4:简易磁流体薄膜以及光学测试装置

图3中给出的是磁流体薄膜的示意图,实验中我们用三块尺寸一样的载玻片(长宽1.5cm,厚0.2mm),将其中一块在中间腐蚀一个尺寸约为2mm2的小孔,将三块玻璃片叠在一起并将磁流体注入其中。

图4给出了测试系统示意图,其中L是激光器,P是起偏器,C是线圈,F是磁流体薄膜,S是电源,A是检偏器,D探测器,PC是电脑。

实验中先调节起偏器与检偏器使光路消光,再调节磁场的大小,记录投射光强随磁场的变化规律。

图5即为体积浓度分别为0.8%和3%的磁流体随磁场的变化情况,从图中可以看出当磁流体浓度比较小时(0.8vol%),透射光强随磁场单调增加,并且光强达到最大时需要的磁场比较大(0.12T),而当磁流体浓度比较大时(3vol%),光强随磁场先增大后减小,而且光强达到最大时需要的磁场比较小(0.015T)。

实施例5:光学开关的响应时间

图6和图7分别是磁流体浓度为0.8vol%和3vol%的光学开关在0.08T的磁场下的光强随磁场的变化,从图中可以看出,在施加磁场的瞬间,对0.8vol%的磁流体光强在瞬间(0.01s)达到最大,而当撤销磁场时,投射光需要花费较长的时间(0.2s)减为零。而当磁流体浓度为3vol%时,随外加0.08T磁场的施加,透射光强在较短时间内(0.01s)先增大后减小,在撤销磁场后,透射光强在0.4s内又先增大后减为零。当我们将施加在3vol%的磁流体上的磁场降为0.008T时,我们发现图8的情况即透射光强随外磁场的响应时间减少了很多(约为0.05s)。

通过以上我们知道,经过调整参数(如磁场强度,磁流体浓度)我们得到了一种非常简便的磁流体开关,这种开关非常容易通过外加磁场控制,而且在实验中我们得到了响应时间非常小开关,这极大的拓宽了这种煤油基磁流体开关的在实际中的应用。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号