首页> 中国专利> 用于在变速器接合过程中利用道路坡度和质量估算值控制扭矩传递的车辆系统及方法

用于在变速器接合过程中利用道路坡度和质量估算值控制扭矩传递的车辆系统及方法

摘要

根据本发明的示例性方面的方法除其他方面外包括根据在电动车辆的变速器接合过程中存在的估算的负载而控制电动车辆的电机的扭矩输出。

著录项

  • 公开/公告号CN105485326A

    专利类型发明专利

  • 公开/公告日2016-04-13

    原文格式PDF

  • 申请/专利权人 福特全球技术公司;

    申请/专利号CN201510604465.2

  • 申请日2015-09-21

  • 分类号F16H61/02(20060101);F16H59/66(20060101);F16H59/52(20060101);F16H59/68(20060101);F16H59/70(20060101);F16H61/32(20060101);

  • 代理机构11278 北京连和连知识产权代理有限公司;

  • 代理人武硕

  • 地址 美国密歇根州迪尔伯恩市中心大道330号800室

  • 入库时间 2023-12-18 15:20:38

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-10-22

    授权

    授权

  • 2017-10-13

    实质审查的生效 IPC(主分类):F16H61/02 申请日:20150921

    实质审查的生效

  • 2016-04-13

    公开

    公开

说明书

技术领域

本发明涉及一种与电动车辆有关的车辆系统和方法。可以控制电机的扭矩输出以补偿在电动车辆的变速器接合过程中道路坡度和车辆质量的变化。

背景技术

降低汽车及其它交通工具的燃料消耗及排放物的需要是众所周知的。因此,正在开发减少或完全消除对内燃发动机的依赖的车辆。电动车辆是当前为该目的开发的车辆的一种类型。通常,电动车辆不同于传统的机动车辆,因为它们有选择地由一个或多个为电池供能的电机驱动。相反,传统的机动车辆唯一地依赖于内燃发动机来驱动车辆。

当车辆静止时电动车辆通常使电机旋转减慢以节省能量。这可能影响随后的变速器接合的效率。例如,当随后要求换挡时变速器泵通常不能足够快地加压以平稳地接合变速器的离合器。尽管一些车辆可能配备有辅助油泵,但这些泵缺少生成执行变速器的离合器的初始接合/填满所需的压力或流量的足够的能力。电动车辆的变速器的接合效率还受道路坡度和车辆质量的变化的影响。

发明内容

根据本发明的示例性方面的方法除其他方面外包括基于在电动车辆的变速器接合过程中存在的估算的负载控制电动车辆的电机的扭矩输出。

在前述方法的另一非限制性实施例中,响应于换挡装置从空挡向驱动挡的移动而执行该控制步骤。

在任一前述方法的另一非限制性实施例中,控制步骤包括确定在开始变速器接合时变速箱的输入轴是正处于旋转还是静止。

在任一前述方法的另一非限制性实施例中,估算的负载至少基于道路坡度估算值、车辆质量估算值、传动系负载、以及变速器泵负载。

在任一前述方法的另一非限制性实施例中,估算的负载基于旋转加速变速箱的输入轴所需的惯量。

在任一前述方法的另一非限制性实施例中,控制步骤包括估算在变速器接合过程中存在的负载和调整电机的扭矩输出以补偿估算的负载。

在任一前述方法的另一非限制性实施例中,控制步骤包括确定道路坡度估算值和由道路坡度估算值得出第一扭矩补偿值。

在任一前述方法的另一非限制性实施例中,控制步骤包括确定车辆质量估算值和由车辆质量估算值得出第二扭矩补偿值。

在任一前述方法的另一非限制性实施例中,该方法包括由传动系损失得出第三扭矩补偿值以及由变速器泵负载得出第四扭矩补偿值。

在任一前述方法的另一非限制性实施例中,该方法包括通过将第一扭矩补偿值、第二扭矩补偿值、第三扭矩补偿值以及第四扭矩补偿值相加来确定前馈扭矩。

在任一前述方法的另一非限制性实施例中,控制步骤包括基于前馈扭矩和反馈扭矩调整扭矩输出。

在任一前述方法的另一非限制性实施例中,该方法包括基于旋转加速变速箱的输入轴所需的惯性量得出第五扭矩补偿值。

在任一前述方法的另一非限制性实施例中,该方法包括通过将第一扭矩补偿值、第二扭矩补偿值、第三扭矩补偿值、第四扭矩补偿值及第五扭矩补偿值相加来确定前馈扭矩。

在任一前述方法的另一非限制性实施例中,控制步骤包括基于前馈扭矩和反馈扭矩调整扭矩输出。

在任一前述方法的另一非限制性实施例中,电动车辆是模块化混合动力传动系统(MHT)车辆。

根据本公开的另一示例性方面的车辆系统除其他方面外包括变速箱、向变速箱的输入轴提供扭矩的电机以及控制单元,该控制单元与电机通信并配置为调整电机的扭矩输出以补偿变速器接合过程中道路坡度和车辆质量的变化。

在前述车辆系统的另一非限制性实施例中,变矩器设置在电机和变速箱之间。

在任一前述车辆系统的另一非限制性实施例中,变速器泵通过电机进行加压。

在任一前述车辆系统的另一非限制性实施例中,控制单元配置为估算在变速器接合过程中存在的负载以及通过调整扭矩输出来补偿估算的负载。

在任一前述车辆系统的另一非限制性实施例中,当从空挡移至驱动挡时换挡装置驱动变速器接合。

可以单独地或任意组合地采用包括它们的各个方面或各自的单独的特征的任意一个的前述段落、权利要求或下面的说明书及附图的实施例、示例及替代物。结合一个实施例描述的特征对所有实施例都是适用的,除非这些特征是互不相容的。

基于下面的具体实施方式,对于本领域技术人员来说本公开的各种特征和优点将变得显而易见。伴随具体实施方式的附图可以简单地描述如下。

附图说明

图1示意性说明了电动车辆的动力传动系统;

图2说明了电动车辆的车辆系统;

图3示意性说明了基于在变速器接合过程中存在的估算的负载控制电机的扭矩输出的车辆控制策略;

图4用图表说明了随时间的电机扭矩。

具体实施方式

本发明涉及基于在变速器接合过程中存在的估算的负载控制电机的扭矩传递的车辆系统及方法。车辆系统计算道路坡度估算值和车辆质量估算值。使用这些估算值得出增加到其它预期的扭矩负载中的扭矩补偿值以计算前馈扭矩。前馈扭矩与反馈扭矩,或扭矩调节合并以补偿在变速器接合过程中坡度或质量的变化。车辆系统可以控制扭矩输出,而不管变速器输入轴在接合时是正处于旋转还是静止。以下将详细说明这些和其它特征。

图1示意性说明了电动车辆10。尽管在一些实施例中示为混合动力电动车辆(HEV),但本公开可以适用于其他类型的电动车辆。另外,尽管图1中说明了特定的部件关系,但该说明并不旨在限制本公开。换句话说,应该很容易理解的是,电动车辆10的各种部件的配置及方位可以在本公开的范围内变化。

示例性电动车辆10包括动力传动系统12。动力传动系统12包括发动机14及可选择地由发动机14驱动的变速器系统16。在一个实施例中,变速器系统16是模块化混合动力传动系统(MHT)。变速器系统16可以包括由高压电池20供能的电机18、变矩器22及多级传动比自动变速器或变速箱24。在一个实施例中,电机18配置为电动马达。然而,在本公开的范围内,电机18可以可替换地配置为发电机或组合式马达/发电机。

发动机14及电机18两者均可以用作电动车辆10的可用驱动源。发动机14总体上表示可以包括例如汽油、柴油的内燃发动机或天然气供能的发动机或燃料电池的动力源。当设置在发动机14和电机18之间的发动机分离离合器26接合时,发动机14生成动力以及提供给电机18的相应的扭矩。

在一些实施例中,使用电机18启动发动机14以使用通过发动机分离离合器26提供的扭矩旋转发动机14。可替换地,电动车辆10可以装配有例如通过皮带或齿轮传动机构可操作地连接至发动机14的低压起动机54。起动机54可以用于提供扭矩以在不增加来自电机18的扭矩的情况下启动发动机14。起动机54可以由高压电池20供能,或者电动车辆10可以包括低压电池56以向起动机54和/或其他车辆部件提供动力。

电机18可以是多种类型电机中的任意一种。通过一个非限制性实施例中,电机18可以是永磁同步马达。

当发动机分离离合器26至少部分接合时,自发动机14到电机18或者自电机18到发动机14的动力流是可行的。例如,发动机分离离合器26可以接合并且电机18可以作为发电机运行以将由曲轴30及电机轴32提供的转动能转换为电能以存储在电池20中。发动机分离离合器26还可以分离以将发动机14与动力传动系统12的剩余部分隔离,这样电机18可以用作推动电动车辆10的唯一动力源。

电机轴32可以延伸穿过电机18。电机18连续可驱动地连接至电机轴32,然而只有当发动机分离离合器26至少部分接合时,发动机14才可驱动地连接至电机轴32。

电机18通过电机轴32连接至变矩器22。当发动机分离离合器26至少部分接合时,变矩器22因此连接至发动机14。变矩器22包括安装到电机轴32的叶轮及安装到变速器输入轴34的涡轮。变矩器22因此提供在电机轴32和变速器输入轴34之间的液压联轴器。

当叶轮比涡轮旋转得快时,变矩器22将动力从叶轮传送至涡轮。涡轮扭矩和叶轮扭矩的大小通常依赖于相对速度。当叶轮速度与涡轮速度的比足够高时,涡轮扭矩是叶轮扭矩的倍数。还可以提供变矩器旁通离合器36。当接合时,变矩器旁通离合器36摩擦地或机械地连接变矩器22的叶轮及涡轮以提供更加有效率的动力传输。变矩器旁通离合器36可以作为起步离合器运行以提供平稳的车辆起步。可替换地,或结合地,对于不包括变矩器22或变矩器旁通离合器36的应用,可以在电机18和变速箱24之间设置类似于发动机分离离合器26的起步离合器。在一些实施例中,发动机分离离合器26通常是指上游离合器并且变矩器旁通离合器36(其可以是起步离合器)通常是指下游离合器。

变速箱24可以包括齿轮组(未示出),使用通过例如离合器、行星齿轮及制动器(未示出)的摩擦元件的有选择的接合的不同齿轮比有选择地运行该齿轮组以建立所需的多个离散或阶梯传动比。通过结合和分离齿轮组的某些元件的换挡计划,摩擦元件是可以控制的以控制变速器输出轴38和变速器输入轴34之间的传动比。变速箱24可以基于各种车辆及环境运行条件通过相关的控制器自动地从一个传动比转换至另一个。然后变速箱24向变速器输出轴38提供动力传动系统输出扭矩。

应该理解的是,与变矩器22一起使用的液压受控的变速箱24只是变速箱或变速器布置的一个非限制性实施例,并且对于与本公开的实施例一起使用来说,接受来自发动机和/或马达的输入扭矩并且然后以不同的传动比将扭矩提供给输出轴的任意多传动比变速箱是可以接受的。例如,变速箱24可以由包括一个或多个伺服马达的自动机械式(或手动)变速器(AMT)实施以沿着变速轨转换/旋转变速叉来选择所需的齿轮比。例如,如本领域技术人员通常所理解的,AMT可以用于具有更高的扭矩需要的应用中。

变速器输出轴38可以连接至差速器42。差速器42通过连接至差速器42的各自的轮轴驱动一对车轮44。在一个实施例中,例如当车辆转弯时,在允许轻微的速度差的同时差速器42向每个车轮44传送几乎相等的扭矩。不同类型的差速器或类似装置可以用于将来自动力传动系统12的扭矩分配至一个或多个车轮44。例如,在一些应用中,可以根据特定的操作模式或状况改变扭矩分配。

可以由变速器泵50提供用于变速器系统16的加压流体。变速器泵50可以连接至电机18或与其邻近,这样其随着电机18及电机轴32旋转以为变速箱24的完全运行加压并提供足够的主压力(linepressure)。当包含变速器泵50的电机轴32的部分处于静止,变速器泵50也可以处于静止并且是闲置的。

当变速器泵50闲置时,为了提供加压变速器流体,还可以设置辅助泵52。辅助泵52可以例如由低压电池56电动地供能。在一些实施例中,当辅助泵52正运行时,辅助泵52为变速箱24提供一部分变速器流体,这样变速箱24限制在例如特定驱动器或齿轮比的操作中。

冷却的变速器流体,例如油,可以从变矩器22引入油底壳58。在某些情况期间,辅助泵52可以将变速器液体从油底壳58泵送至变速器泵50。

动力传动系统12可以额外地包括关联的控制单元40。尽管示意性地说明为单个控制器,但控制单元40可以是更大的控制系统的一部分并且可以由整个电动车辆10的各种其他控制器控制,例如包括动力传动系统控制单元、变速器控制单元、发动机控制单元等的车辆系统控制器(VSC)。因此,应该理解的是,控制单元40及一个或多个其他控制器可以共同地被称为“控制单元”,该控制单元例如通过多个互相关联的算法响应于来自各种传感器的信号控制各种驱动器以控制如下功能:例如启动/停止发动机14、运行电机18以提供车轮扭矩或为电池20充电、选择或安排变速器换挡、驱动发动机分离离合器26等。在一个实施例中,组成VSC的各种控制器可以使用通用总线协议(例如,CAN)彼此通信。

控制单元40可以包括与各种类型的计算机可读存储装置或介质通信的微处理器或中央处理单元(CPU)。例如,计算机可读存储装置或介质可以包括只读存储器(ROM)中的易失性及非易失性存储器、随机存取存储器(RAM)以及不失效存储器(KAM)。KAM是当CPU断电时可以用于存储各种操作变量的永久或非易失性存储器。可以使用任意数量的已知存储装置实施计算机可读存储器或介质,已知存储装置例如PROM(可编程的只读存储器)、EPROM(电PROM)、EEPROM(电可擦PROM)、闪存存储器或在控制发动机或车辆中由控制器使用的能够存储数据的任意其他电力、磁力、光学或组合式存储装置,其中的一些呈现可执行的指令。

控制单元40还可以通过输入/输出(I/O)接口与各种发动机/车辆传感器及驱动器通信,这些输入/输出接口可以实施为单一的集成接口,该集成接口提供各种原始数据或信号调节、处理和/或转换,短路保护等。可替换地,一个或多个专用硬件或固件芯片可以用于在提供给CPU之前调节并处理特定信号。

如图1示意性说明的,控制单元40可以向发动机14、发动机分离离合器26、电机18、变矩器旁通离合器36、变速箱24和/或其他部件传输信号和/或从它们传输信号。尽管未明确说明,但本领域技术人员将意识到各种功能或部件均可以由上面确定的每个子系统中的控制单元控制。参数、系统和/或可以使用由控制器执行的控制逻辑直接或间接驱动的部件的典型示例包括燃油喷射正时、速率和持续时间、节气门位置、火花塞点火正时(用于火花点火发动机)、进气/排气阀正时和持续时间,例如交流发电机、空调压缩机的前端附件装置(FEAD)部件、电池充电、可再生制动、M/G(电动/发电机)操作、用于发动机分离离合器26的离合器压力、变矩器旁通离合器36以及变速箱24等。例如,通过I/O接口传输输入的传感器可以用于指示涡轮增压器增压压力、曲轴位置(PIP)、发动机旋转速度(RPM)、车轮速度(WS1、WS2)、车辆速度(VSS)、冷却剂温度(ECT)、进气歧管压力(MAP)、加速器踏板位置(PPS)、点火开关位置(IGN)、节气门位置(TP)、气温(TMP)、排气氧(EGO)或其他排气组分浓度或存在、进气流量(MAF)、变速齿轮、传动比或模式、变速器油温(TOT)、变速器涡轮速度(TS)、变矩器旁通离合器36状态(TCC)、减速或换挡模式。

当然,可以根据特定应用在一个或多个控制器中的软件、硬件或软件和硬件的组合中实施控制逻辑。当在软件中实施时,可以在一个或多个具有代表由计算机执行的代码或指令的存储数据的计算机可读存储装置或介质中提供控制逻辑以控制车辆或其子系统。计算机可读存储装置或介质可以包括许多已知的物理装置中的一个或多个,该已知的物理装置使用电、磁性和/或光学存储器保存可执行的指令和相关的校准信息、操作变量等。

电动车辆10的驾驶员可以使用加速器踏板48以提供需要的扭矩、动力或驱动命令以推动电动车辆10。总体上,压下和释放加速器踏板48生成加速器踏板位置信号,该信号可以由控制单元分别解释为用于增加动力或减少动力的需要。至少基于来自加速器踏板48的输入,控制单元40命令来自发动机14和/或电机18的扭矩。控制单元40还控制变速箱24内的齿轮换挡正时,以及发动机分离离合器26和变矩器旁通离合器36的接合或分离。像发动机分离离合器26一样,可以跨越接合和分离位置的范围调制变矩器旁通离合器36。除了由在叶轮和涡轮之间的液压联轴器产生的可变滑差,这还产生变矩器22内的可变滑差。可替换地,在不使用调制操作模式的情况下,可以根据特定应用将变矩器旁通离合器36操作为锁止或打开。

为了使用发动机14驱动电动车辆10,发动机分离离合器26至少部分接合以通过发动机分离离合器26将至少一部分发动机扭矩传送至电机18,并且然后通过变矩器22自电机18传送至变速箱24。电机18可以通过提供额外的动力辅助发动机14转动电机轴32。该操作模式可以称为“混合模式”或“电力辅助模式”。

为了使用电机18作为独立动力源驱动电动车辆10,除了发动机分离离合器26将发动机14与动力传动系统12的剩余部分隔离之外,动力流保持相同。在此期间发动机14内的燃烧可以停用或者以其他方式关闭以保存燃油。电力电子器件(未示出)可以将来自电池20的直流(DC)电压转换为由电机18使用的交流(AC)电压。控制单元40命令电力电子器件将来自电池20的电压转换为提供给电机18的AC电压以向电机轴32提供正的或负的扭矩。该操作模式可以称为“仅电力”或“电动(EV)”操作模式。

在任意操作模式中,电机18可以用作马达并为动力传动系统12提供驱动力。可替换地,电机18可以用作发电机并将来自电动车辆10的动能转换为电能以存储在电池20中。例如,当发动机14正为电动车辆10提供推动力时,电机18可以用作发电机。在来自旋转车轮44的转动能通过变速箱24传回并且转换为电能用于存储在电池20中的再生制动过程中,电机18可以额外地用作发电机。

应该理解的是,图1的高度示意性的描述仅仅是示例性的,并不旨在限制本公开。其他配置是另外或可替换地可预期的。

图2说明了可以包含在电动车辆例如图1的电动车辆10或任何其它电动车辆中的车辆系统60。无论变速器输入轴是正处于旋转还是静止,车辆系统60适合于估算在变速器接合过程中存在的负载,以及适合于在接合的时候补偿这些负载,以便在输入轴的最小速度波动的情况下执行平稳的接合。

在一个非限制性实施例中,示例性车辆系统60包括换挡装置62、控制单元64、电机66、变速器泵68、变矩器78以及变速箱70。换挡装置62可以以车载的方式位于设置在车辆上的乘客舱72(示意性显示)内以及通常用于改变变速箱70的齿轮。换挡装置62可以是包括可移动的手柄74的变速杆。然而,在另一非限制性实施例中,换挡装置62可以包括包含一个或多个操纵杆、转盘和/或按钮的电子换档装置。

换挡装置62与控制单元64通信。控制单元64可以是整个车辆控制单元例如图1的控制单元40的一部分,或可供选择地是与控制单元40分离的独立的控制单元,或多个彼此通信的控制单元。当换挡装置62从空挡(例如停车挡或空挡)移动至驱动档(例如驱动挡、倒挡、低速挡等)时,换挡信号S1可以传输至控制单元64表明需要变速箱70的其中一个齿轮的接合。

控制单元64可以响应于接收信号S1将扭矩要求信号S2传输给电机66。扭矩要求信号S2命令电机66提供足以为变矩器78提供动力的扭矩输出,以及因此以所需的扭矩旋转变速箱70的输入轴80。在一个实施例中,电机66是电动马达。旋转输入轴80使变速器泵68加压以便它可以将足够量的变速器流体传输给离合器、齿轮以及变速箱70的其它部件。正如以下更详细讨论的,在变速箱70的接合过程中可以控制(即增加或减少)电机66的扭矩输出以补偿在接合过程中可能存在的各种负载。

继续参照图1和2,图3示意性说明了配备有如上所述的车辆系统60的电动车辆10的车辆控制策略100。可以执行示例性车辆控制策略100来估算和补偿在变速器接合过程中存在的各种负载。例如,车辆控制策略100可以通过相应地调整扭矩输出来补偿道路坡度或车辆质量的变化。当然,车辆系统60能够实施和执行在本发明范围内的其它控制策略。在一个实施例中,可以利用一个或多个适合于执行车辆控制策略100或任何其它控制策略的运算法则来编程车辆系统60的控制单元64。

如图3所示,车辆控制策略100开始于框102。在框104,车辆系统60确定换挡装置62是否已经从空挡移至驱动挡。如果换挡装置还没有从空挡移至驱动挡,则车辆控制策略100在框106结束。然而,如果换挡装置已经从空挡移至驱动挡,则表明变速器接合是可能的,然后车辆控制策略100可以进行至框108。

在框108,车辆系统60确定道路坡度估算值以及由道路坡度估算值得出的扭矩补偿值TG。道路坡度估算值是在变速器接合过程中存在的一部分负载以及可以使用任何已知的道路坡度估算技术进行估算。在一个非限制性实施例中,可以基于一个或多个车辆速度、车辆加速度、横摆率、车轮扭矩、车辆质量、阻力等之间的关系计算道路坡度估算值。扭矩补偿值TG表示电机66必须另外输出以补偿道路坡度估算值的扭矩的量。

类似地,在框110中,车辆系统60确定车辆质量估算值以及由车辆质量估算值得出的扭矩补偿值TM。车辆质量估算值是在变速器接合过程中存在的另一部分负载以及可以使用任何已知的车辆质量估算技术进行估算。在一个非限制性实施例中,可以基于一个或多个纵向加速度、车轮扭矩、车辆速度、横摆率、横向加速度等之间的关系计算车辆质量估算值。扭矩补偿值TM表示电机66必须另外输出以补偿车辆质量估算值的扭矩的量。

可以使用多种方法计算道路坡度估算值和车辆质量估算值。在美国专利申请公开号2014/0067154、美国专利申请公开号2014/0067240及美国专利号8,793,035中描述了用于确定道路坡度估算值和/或车辆质量估算值的适合的方法的非限制性示例,它们的公开内容通过引用合并于此。

接下来,在框112,车辆系统60确定变速箱70的输入轴80是否旋转。如果输入轴80旋转,则车辆控制策略100前进至框114。然而,如果输入轴80静止,则车辆控制策略100可以前进至框122。

如果在框112确定输入轴80将要旋转,则在框114至116车辆系统60可以确定与在变速器接合过程中存在的各种额外的负载有关的扭矩补偿值。例如,在框114中,可以计算由传动系损失得出的扭矩补偿值TL。扭矩补偿值TL表示电机66必须输出以补偿任何传动系损失的额外的扭矩的量。在一个实施例中,如由方程式(1)所示,扭矩补偿值TL可以是变矩器78的涡轮的速度(NTurbine)、输入轴80的速度(NInput)、电动车辆10的速度(VS)以及变速箱70的变速器流体温度(Teoil)的函数:

TL=f(NTurbine/NInput,VS,Teoil)(1)

在框116中可以基于变速器泵68的负载计算另一扭矩补偿值TP。扭矩补偿值TP表示电机66必须另外输出以补偿变速器泵68的负载的扭矩的量。在一个非限制性实施例中,如方程式(2)所示,扭矩补偿值TP可以是变矩器78的叶轮的速度(NImpeller)和变速箱70的变速器流体温度(Teoil)的函数:

TP=f(NImpeller,Teoil)(2)

在框118可以通过将与在变速器接合过程中存在的每个负载有关的每个扭矩补偿值加在一起来计算前馈扭矩TFF。前馈扭矩TFF是预定的扭矩或基于与电动车辆10有关的道路负载和各种损失的“起始点”。以下方程式表示前馈扭矩TFF的计算:

TFF=TL+TP+TG+TM(3)

在框120车辆系统60的控制单元64可以命令电机66的扭矩输出TEM。扭矩输出TEM可以由前馈扭矩TFF和反馈扭矩得出。反馈扭矩是在变速器接合过程中试图保持电机66的平稳的速度概况的调节扭矩。扭矩输出TEM可以使用以下方程式得出:

TEM=TFF+(NEM_des–NEM_act)KP+∫(NEM_des–NEM_act)Kidt(4)

其中:

NEM_des是电机所需的转速;

NEM_act是电机的实际转速;

KP是比例增益;以及

Ki是积分增益。

即使在框112确定输入轴80是静止的,车辆系统60仍然在框122-126中确定在变速器接合过程中可能存在的与各种负载有关的扭矩补偿值。例如,可以在框122基于传动系损失计算扭矩补偿值TL(类似于框114)以及可以在框126基于变速器泵68的负载计算扭矩补偿值TP(类似于框116)。可以在框124确定另一扭矩补偿值TJ并且扭矩补偿值TJ基于自静止以来旋转加速输入轴80所需的惯性。扭矩补偿值TJ表示电机66必须输出以补偿旋转加速输入轴80所需的惯性的额外的扭矩的量。在一个非限制性实施例中,如方程式(5)所示,扭矩补偿值TJ可以基于电机66的惯性(JEM)和输入轴80随着时间的速度变化(ωEM):

TJ=JEM*EM/dt(5)

然后可以在框128计算前馈扭矩TFF,以及可以在框120计算和命令扭矩输出TEM。然后车辆控制策略100在框106结束。

图4示意性说明了车辆系统60的电机66的扭矩对时间的图。变速器接合在时间T1开始。前馈扭矩90补偿接合的负载的预期的变化。反馈扭矩92在时间T1和T2之间对补偿在变速器接合过程中在时间T1时的负载的任何突然的变化起到相当少的作用。电机66的输入速度更快地稳定到目标速度,导致在时间T2和T3之间在传动系中的少的响动。

尽管不同的非限制性实施例被描述为具有特定的部件或步骤,但本公开的实施例并不限制在那些具体的结合。结合任意其他非限制性实施例的特征或部件使用任意非限制性实施例中的一些部件或特征是可行的。

应该理解的是,相同的附图标记标识全部多个附图中相同或类似的元件。应该理解的是,尽管在这些示例性实施例中公开并描述了特定的部件布置,但其他布置也可以得益于本公开的技术。

前述说明书应该被理解为是说明性的而不是任何限制性的意义。本领域的技术人员将会理解的是,某些修改可以落入本公开的范围内。由于这些原因,应该研究下面的权利要求以确定本公开的真实范围及内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号