首页> 中国专利> 一种可自发驱动的聚两性电解质水凝胶驱动器及其制备方法与驱动方式

一种可自发驱动的聚两性电解质水凝胶驱动器及其制备方法与驱动方式

摘要

本发明公开了一种可自发驱动的聚两性电解质水凝胶驱动器及其制备方法与驱动方式,该水凝胶驱动器是由阳离子单体[3‑(甲基丙烯酰氨基)丙基]三甲基氯化铵和阴离子单体对苯乙烯磺酸钠、丙烯酸类单体通过自由基共聚得到的水凝胶,再经过碱性溶液浸泡处理后在酸性溶液中获得固定的临时形状制备得到;该水凝胶驱动器可通过改变溶液pH值的方法使水凝胶在溶液中实现自发形状改变的驱动功能。

著录项

  • 公开/公告号CN107141407A

    专利类型发明专利

  • 公开/公告日2017-09-08

    原文格式PDF

  • 申请/专利权人 华南理工大学;

    申请/专利号CN201710376912.2

  • 申请日2017-05-25

  • 分类号C08F220/34(20060101);C08F220/06(20060101);C08F212/14(20060101);C08J7/14(20060101);C08J3/075(20060101);C08L33/14(20060101);

  • 代理机构44102 广州粤高专利商标代理有限公司;

  • 代理人何淑珍

  • 地址 510640 广东省广州市天河区五山路381号

  • 入库时间 2023-06-19 03:16:17

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-04-09

    授权

    授权

  • 2017-10-10

    实质审查的生效 IPC(主分类):C08F220/34 申请日:20170525

    实质审查的生效

  • 2017-09-08

    公开

    公开

说明书

技术领域

本发明涉及功能性聚两性电解质材料的智能驱动器材料领域,具体涉及一种可自发驱动的聚两性电解质水凝胶驱动器及其制备方法与驱动方式。

背景技术

水凝胶由于含有大量的水,并且具有完善的三维网络结构赋予其软物质的特性,具有弱刺激-强响应、少添加-大效果、驱动条件温和等优点;而软物质驱动器特别是水凝胶驱动器在智能器件领域的发展日益受到关注。聚两性电解质水凝胶则是包含阳离子单体、阴离子单体甚至中性单体的一种水凝胶,与聚电解质不同的是它具有十分独特的溶胀行为,这种性质对新型驱动器材料的开发和设计具有重要的启发和指导意义,将聚两性电解质水凝胶应用于智能驱动器的设计与开发,是今后智能柔性材料的研究热点之一。

在凝胶驱动器的研究中,形状记忆凝胶驱动器可以从临时形状回复到原始形状,为目前研究颇为广泛的一种水凝胶驱动器。但目前报道的形状记忆凝胶驱动器的每一个驱动周期都需要先用外力将凝胶固定为一个临时形状(ACS Appl. Mater. Interfaces 2016, 8, 12384−12392;Macromol. Mater. Eng. 2017, 302, 1600359),而无法实现凝胶自发的在临时形状与原始形状之间转换,因此凝胶驱动器的操作方式比较复杂,大大制约了水凝胶在驱动器领域的应用。

聚两性电解质水凝胶由具有正负电荷的两性聚电解质通过静电吸引交联作用制备而成,具有特殊pH响应性和溶胀行为。受此启发,我们创造性地制备了一种具有pH响应性的聚两性电解质水凝胶驱动器,将合成传统聚两性电解质水凝胶的阴离子强电解质单体的一部分置换为弱电解质单体,通过改变溶液的pH使水凝胶强度和溶胀度发生改变,实现水凝胶在具有形状记忆功能的同时可实现自发驱动现象。

发明内容

针对现有技术的不足,本发明提供了一种可自发驱动的聚两性电解质水凝胶驱动器及其制备方法与驱动方式。

本发明的可自发驱动的聚两性电解质水凝胶驱动器由阳离子单体[3-(甲基丙烯酰氨基)丙基]三甲基氯化铵和阴离子单体对苯乙烯磺酸钠、丙烯酸类单体通过自由基共聚得到;该水凝胶驱动器可通过改变溶液pH值的方法使水凝胶在溶液中实现自发形状改变的驱动功能。

本发明的目的通过以下技术方案实现。

一种可自发驱动的聚两性电解质水凝胶驱动器的制备方法,包括如下步骤:

(1)制备聚两性电解质水凝胶:将阳离子单体[3-(甲基丙烯酰氨基)丙基]三甲基氯化铵、阴离子单体对苯乙烯磺酸钠和丙烯酸类单体、引发剂分散在水中,并除去反应液中的氧气;然后将反应液加入到模具中并密封,引发聚合得到聚两性电解质水凝胶;

(2)制备聚两性电解质水凝胶驱动器:将步骤(1)制备的聚两性电解质水凝胶在碱性溶液中浸泡,使用外力使聚两性电解质水凝胶获得临时形状;再将具有临时形状的聚两性电解质水凝胶放入酸性溶液中固定临时形状,即得到聚两性电解质水凝胶驱动器。

进一步地,步骤(1)所述阳离子单体与阴离子单体的摩尔比为1:1,对苯乙烯磺酸钠与丙烯酸类单体的摩尔比为1:9 ~ 9:1,总单体在反应液中的摩尔浓度为0.8 ~ 4 mol/L;所述丙烯酸类单体为丙烯酸和甲基丙烯酸中的一种以上。

进一步地,步骤(1)所述引发剂为光引发剂或热引发剂,当使用光引发剂时,采用波长范围为300~380nm,功率为10~50 W的紫外光照射6~24小时引发聚合;当使用热引发剂时,在50 ~ 75℃聚合10~40小时;所述引发剂的用量为总单体摩尔量的0.05% ~ 0.5%。

进一步地,所述光引发剂为α-酮戊二酸,所述热引发剂为过硫酸钾或过硫酸铵。

进一步地,步骤(2)所述碱性溶液为NaOH溶液、KOH溶液、Ca(OH)2溶液或Ba(OH)2溶液,浓度为0.001>

进一步地,步骤(2)所述酸性溶液为HCl溶液、H2SO4溶液或HNO3溶液,浓度为0.001>

以上所述的制备方法制得的一种可自发驱动的聚两性电解质水凝胶驱动器。

以上所述的一种可自发驱动的聚两性电解质水凝胶驱动器的驱动方式,包括如下步骤:

(1) 将聚两性电解质水凝胶驱动器放入碱性溶液中浸泡,临时形状可恢复为原始形状;

(2) 将恢复为原始形状的聚两性电解质水凝胶驱动器再放入酸性溶液中浸泡,所述聚两性电解质水凝胶驱动器即可在没有外力作用的情况下自发的变回之前的临时形状;

(3)将具有临时形状的聚两性电解质水凝胶驱动器再进行步骤(1)的操作,所述聚两性电解质水凝胶驱动器即可恢复为原始形状,将恢复为原始形状的聚两性电解质水凝胶驱动器再进行步骤(2)的操作,所述聚两性电解质水凝胶驱动器在没有外力作用的情况下自发的变回之前的临时形状;即,通过步骤(1)和步骤(2)的连续重复操作,可以实现通过控制溶液pH值,在不施加外力作用的情况下,使所述聚两性电解质水凝胶驱动器在溶液中在临时形状与原始形状之间自发变化以产生驱动。

进一步地,所述碱性溶液为NaOH溶液、KOH溶液、Ca(OH)2溶液或Ba(OH)2溶液,浓度为0.001>

进一步地,所述酸性溶液为HCl溶液、H2SO4溶液或HNO3溶液,浓度为0.001>

与现有技术相比,本发明具有如下的优点与技术效果:

1. 本发明所提供的聚两性电解质水凝胶驱动器,可通过控制溶液pH,在不施加外力作用的情况下,使凝胶在溶液中在临时形状与原始形状之间自发变化以产生驱动,且此过程可多次重复进行。

2. 本发明的可自发驱动的聚两性电解质水凝胶驱动器,克服了传统形状记忆水凝胶驱动器每个形状记忆周期都必须通过外力获得临时形状的缺陷。

3. 本发明所提供的可连续自发驱动的聚两性电解质水凝胶驱动器可用于设计自发驱动的柔性机器人等智能驱动设备。

4. 本发明采用“一锅法”直接共聚得到水凝胶,与传统制备聚两性电解质水凝胶相比,在聚合过程中不添加NaCl等反离子到反应体系中,聚合之后不需要泡水等后续处理步骤,合成方法简单,制备的水凝胶可直接用来制备水凝胶驱动器。

5. 本发明在保证阴阳离子单体摩尔比例为1:1的前提下,可以通过控制两种阴离子单体的比例来调节水凝胶的强度,同时还可以通过调节酸溶液或碱溶液的浓度及浸泡时间来控制该水凝胶驱动器自发驱动的速率及驱动幅度。

具体实施方式

下面结合实施例对本发明做进一步详细的描述。对实施例中得到的水凝胶,采用Xiong等Macromolecules,2009,42:3811-3817文献公开的方法测定机械性能,采用Huang等ACS Appl. Mater. Interfaces, 2016, 8, 12384-12392文献公开的方法测定水凝胶的驱动过程。这些实施例仅用于说明本发明而不用于限制本发明的范围。

实施例1

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.12 mL除氧去离子水中,然后加入0.358 mL甲基丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为300nm,功率为10W的紫外光下照射24小时,得到聚两性电解质水凝胶,其拉伸断裂强度为220 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复10次。

实施例2

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.049 mL除氧去离子水中,然后加入0.429 mL甲基丙烯酸单体、0.6928 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为380nm,功率为30W的紫外光下照射12小时,得到聚两性电解质水凝胶,其拉伸断裂强度为168 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复8次。

实施例3

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.192 mL除氧去离子水中,然后加入0.286 mL甲基丙烯酸单体、1.0392 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为365nm,功率为50W的紫外光下照射6小时,得到聚两性电解质水凝胶,其拉伸断裂强度为243 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复13次。

实施例4

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.12 mL除氧去离子水中,然后加入0.358 mL甲基丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为320nm,功率为40W的紫外光下照射11小时,得到聚两性电解质水凝胶,其拉伸断裂强度为220 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.01 mol/L盐酸溶液中10分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复11次。

实施例5

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.12 mL除氧去离子水中,然后加入0.358 mL甲基丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为360nm,功率为45W的紫外光下照射10小时,得到聚两性电解质水凝胶,其拉伸断裂强度为220 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.001 mol/L盐酸溶液中25分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复12次。

实施例6

在室温下将1.342 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在6.413 mL除氧去离子水中,然后加入0.245 mL甲基丙烯酸单体、0.0660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.00047 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为360nm,功率为40W的紫外光下照射6小时,得到聚两性电解质水凝胶,其拉伸断裂强度为103 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复6次。

实施例7

在室温下将6.708 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在1.156 mL除氧去离子水中,然后加入0.136 mL甲基丙烯酸单体、2.9691 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0234 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为340nm,功率为15W的紫外光下照射24小时,得到聚两性电解质水凝胶,其拉伸断裂强度为658 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L氢氧化钠溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L氢氧化钠溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L氢氧化钠溶液中10分钟又恢复至原始形状,此过程可重复16次。

实施例8

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.19 mL除氧去离子水中,然后加入0.288 mL丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0114 g过硫酸钾,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于50 ℃环境中40小时,得到聚两性电解质水凝胶,其拉伸断裂强度为158 kPa;将制备的聚两性电解质水凝胶浸泡在0.1>2溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1>3溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1>2溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1>3溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1>2溶液中10分钟又恢复至原始形状,此过程可重复7次。

实施例9

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.19 mL除氧去离子水中,然后加入0.288 mL丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0096 g过硫酸铵,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于75 ℃环境中10小时,得到聚两性电解质水凝胶,其拉伸断裂强度为206 kPa;将制备的聚两性电解质水凝胶浸泡在0.1>2溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1>2SO4溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1>2溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1>2SO4溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1>2溶液中10分钟又恢复至原始形状,此过程可重复9次。

实施例10

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.12 mL除氧去离子水中,然后加入0.358 mL甲基丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0114 g过硫酸钾,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于65 ℃环境中12小时,得到聚两性电解质水凝胶,其拉伸断裂强度为176 kPa;将制备的聚两性电解质水凝胶浸泡在0.1 mol/L KOH溶液中5分钟;然后利用外力将其拧成螺旋状,浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.1 mol/L KOH溶液中10分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.1 mol/L KOH溶液中10分钟又恢复至原始形状,此过程可重复12次。

实施例11

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.12 mL除氧去离子水中,然后加入0.358 mL甲基丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为365nm,功率为40W的紫外光下照射11小时,得到聚两性电解质水凝胶,其拉伸断裂强度为220 kPa;将制备的聚两性电解质水凝胶浸泡在1 mol/L KOH溶液中1分钟;然后利用外力将其拧成螺旋状,浸泡在1 mol/L盐酸溶液中0.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在1 mol/L KOH溶液中1分钟,驱动器恢复至原始形状,然后浸泡在1 mol/L盐酸溶液中0.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在1 mol/L KOH溶液中1分钟又恢复至原始形状,此过程可重复5次。

实施例12

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.12 mL除氧去离子水中,然后加入0.358 mL甲基丙烯酸单体、0.8660 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0061 g α-酮戊二酸,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于波长为330nm,功率为25W的紫外光下照射18小时,得到聚两性电解质水凝胶,其拉伸断裂强度为220 kPa;将制备的聚两性电解质水凝胶浸泡在0.001 mol/L氢氧化钠溶液中10分钟;然后利用外力将其拧成螺旋状,浸泡在0.001 mol/L盐酸溶液中25分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.001 mol/L氢氧化钠溶液中30分钟,驱动器恢复至原始形状,然后浸泡在0.001 mol/L盐酸溶液中25分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.001 mol/L氢氧化钠溶液中30分钟又恢复至原始形状,此过程可重复14次。

实施例13

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在3.959 mL除氧去离子水中,然后加入0.519 mL丙烯酸单体、0.1732 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0114 g过硫酸钾,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于65 ℃环境中12小时,得到聚两性电解质水凝胶,其拉伸断裂强度为176 kPa;将制备的聚两性电解质水凝胶浸泡在0.001>2溶液中10分钟;然后利用外力使其弯曲,浸泡在0.1 mol/L 盐酸溶液中1.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.001>2溶液中30分钟,驱动器恢复至原始形状,然后浸泡在0.1 mol/L盐酸溶液中1.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.001>2溶液中30分钟又恢复至原始形状,此过程可重复5次。

实施例14

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.42 mL除氧去离子水中,然后加入0.058 mL丙烯酸单体、1.5588 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0114 g过硫酸钾,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于65 ℃环境中12小时,得到聚两性电解质水凝胶,其拉伸断裂强度为176 kPa;将制备的聚两性电解质水凝胶浸泡在0.01 mol/L氢氧化钠溶液中7.5分钟;然后利用外力使其弯曲,浸泡在0.001>3溶液中25分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.01 mol/L氢氧化钠溶液中20分钟,驱动器恢复至原始形状,然后浸泡在0.001>3溶液中25分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.01>

实施例15

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.132 mL除氧去离子水中,然后加入0.346 mL丙烯酸单体、0.6928 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0096 g过硫酸铵,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于65 ℃环境中12小时,得到聚两性电解质水凝胶,其拉伸断裂强度为176 kPa;将制备的聚两性电解质水凝胶浸泡在0.01>2溶液中7.5分钟;然后利用外力使其弯曲,浸泡在0.01 mol/L 盐酸溶液中10分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在0.01>2溶液中20分钟,驱动器恢复至原始形状,然后浸泡在0.01 mol/L盐酸溶液中10分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在0.01>2溶液中20分钟又恢复至原始形状,此过程可重复8次。

实施例16

在室温下将3.522 mL [3-(甲基丙烯酰氨基)丙基]三甲基氯化铵溶液(浓度为50 wt%)分散在4.247 mL除氧去离子水中,然后加入0.231 mL丙烯酸单体、1.0392 g对苯乙烯磺酸钠单体,搅拌得到均匀的分散液,向分散液中通入氩气以除去其中的氧气,接着加入0.0096 g过硫酸铵,搅拌至完全溶解,最后将反应液加入到模具中并密封,置于65 ℃环境中12小时,得到聚两性电解质水凝胶,其拉伸断裂强度为176 kPa;将制备的聚两性电解质水凝胶浸泡在1 mol/L氢氧化钠溶液中1分钟;然后利用外力使其弯曲,浸泡在1 mol/L盐酸溶液中0.5分钟,该水凝胶定形,即得到聚两性电解质水凝胶驱动器;将该驱动器浸泡在1 mol/L氢氧化钠溶液中1分钟,驱动器恢复至原始形状,然后浸泡在1 mol/L盐酸溶液中0.5分钟,该水凝胶驱动器又自发变成临时形状;接着再浸泡在1 mol/L氢氧化钠溶液中1分钟又恢复至原始形状,此过程可重复11次。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合,均应为等效的置换方式,都包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号