首页> 中国专利> 一种应用于电阻式气体传感器的导电金属有机骨架材料

一种应用于电阻式气体传感器的导电金属有机骨架材料

摘要

本发明的应用于电阻式气体传感器的铟基导电金属有机骨架材料及其制备方法属于化学、材料科学和电子科学等研究的交叉领域。本发明合成的新型铟基导电金属有机骨架材料具有规则的周期性骨架结构和可调控的粒子尺寸,本发明方法操作简便,节约成本,在组装电阻式气体传感器等技术领域具有重要应用。所组装的电阻式气体传感器具有响应范围宽,响应速度快,重复性好,室温操作等特点,尤其可选择性传感检测易挥发有机胺类有害物质。

著录项

  • 公开/公告号CN107991349A

    专利类型发明专利

  • 公开/公告日2018-05-04

    原文格式PDF

  • 申请/专利权人 东北师范大学;

    申请/专利号CN201711141848.6

  • 发明设计人 邢宏珠;王思萍;魏红霞;

    申请日2017-11-17

  • 分类号

  • 代理机构

  • 代理人

  • 地址 130024 吉林省长春市南关区人民大街5268号

  • 入库时间 2023-06-19 05:14:44

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-11-01

    未缴年费专利权终止 IPC(主分类):G01N27/12 专利号:ZL2017111418486 申请日:20171117 授权公告日:20200728

    专利权的终止

  • 2020-07-28

    授权

    授权

  • 2018-06-01

    实质审查的生效 IPC(主分类):G01N27/12 申请日:20171117

    实质审查的生效

  • 2018-05-04

    公开

    公开

说明书

技术领域

本发明属于化学、材料和电子等技术领域,具体涉及一种稳定的导电金属有机骨架材料制备方法及气体传感应用。

背景技术

气体传感在工业生产、过程控制、环境监测、食品质量检测、医疗分析方面具有重要应用。目前,气体传感材料种类很多,例如:陶瓷材料、半导体材料、聚合物材料等。但是,探索适应实际应用的高响应的气体传感材料仍然是一种挑战,特别是在商业领域。半导体和陶瓷材料的响应和恢复能力强,但是,浓度和阻抗之间的线性关系并不理想,与此相比,其他材料的响应、恢复都相对较慢。因此,开发响应速度快、恢复能力强、可测范围广、选择性好的气体传感材料已成为传感领域的迫切需求。

金属有机骨架材料(MOFs)是一类由无机金属节点和有机桥连配体通过配位自组装得到的具有周期性结构的新型纳米多孔材料,它兼具了无机和有机材料的性能。MOFs具有大的比表面积,多孔性,敞开的窗口和化学成分稳定等诸多性能,因此它具备了其它无机多孔材料所不能比拟的优势。MOFs具有丰富的化学组成,结构中的官能团具有多种多样的功能性从而利于实现其预期功能,而且MOFs在许多方面有很好的应用前景,特别是气体传感材料方面。目前已经报道的MOFs传感性能主要集中于荧光传感研究。从便携性和可操作性考量,商业化的传感器主要集中于电阻式传感器。因此,新型的能够应用于电阻式气体传感器的导电金属有机骨架化合物是能够实现这类应用的前提。然而到目前为止,具有电导能力的MOFs材料极少报道。基于此,我们设计制备了一种新型的导电金属有机骨架材料,并以该材料组装电阻式气体传感器,实现对有害气体的高选择性传感应用。

发明内容

本发明的目的是,克服常见气体传感材料选择性差、响应速度慢、恢复时间长、非室温操作等问题,提供了一种室温操作,快速响应,高选择性的新型金属有机骨架类气体传感材料及其制备方法。并用此材料组装电阻式气体传感器对有害气体进行高选择性检测。

本发明所述的新型铟金属有机框架材料是9,10-二(乙炔基间苯二酸)蒽-铟,制备方法简单方便。

本发明还提供该新型导电金属有机框架材料作为气体传感器的应用。

本发明是通过以下技术方案实现的:

一种作为电阻式气体传感器的导电铟金属有机骨架材料,其分子式为(InL)2·2(H3O)·H2O·2DMF(以下简称化合物1),其结构式如下:

该新型导电金属有机框架材料属于三斜晶系,P-1空间群。

本发明的用于气体传感的导电金属有机骨架材料的制备方法,包括以下步骤:将铟盐与有机配体9,10-二(乙炔基间苯二酸)蒽溶于有机溶剂中,加入酸调节,于50~120℃反应48~170小时得到铟金属有机骨架材料;所述的有机溶剂为N,N’-二甲基甲酰胺,N,N’-二甲基乙酰胺,N,N’-二乙基甲酰胺及二甲基亚砜中的一种;所述的铟盐为氯化铟,乙酸铟,硫酸铟和硝酸铟的一种;所选的酸为硝酸,盐酸,六氟磷酸和氟硼酸的一种。铟盐、有机配体、有机溶剂、酸的摩尔比为:1:0.5~10:0.1~10:0.1~10。

本发明对以化合物1作为气体敏感性材料对挥发性有机胺的气体响应效果进行测试。具体的测试步骤和结果为:(1)电阻式气体传感器制作,将铟金属有机骨架材料的纳米粒子加水成糊状后涂覆在带有金电极的陶瓷管上,烘干,老化(2)响应测试,利用气敏元件特性测试仪对该元件的气敏性能进行测试,将空气和乙二胺气体通入测试管,采用静态液体配气法得到了以空气为载气的各种不同体积分数的挥发性气体。通过测试气敏元件在不同气体浓度时的阻抗变化得出响应-浓度曲线,计算公式如下:

Response=(Ra—Rg)/Ra×100%

其中其中Ra为元件在空气中的电阻值,Rg为元件在被检测气体中的电阻值。测试曲线显示传感器的响应值随气体浓度变化呈线性关系,这表明该新型铟金属有机骨架材料对挥发性有机胺气体的响应效果很好。

本发明的铟金属有机骨架材料具有很好的水溶剂稳定性,制备方法简单,合成范围宽并且产率高;在气体传感性能方面,由于金属有机框架材料不同于普通的掺杂材料,它具有很好的稳定性,并且重复性良好。

附图说明

图1为该新型金属有机骨架材料结构示意图;

图2为该新型金属有机骨架材料的粉末X-射线(PXRD)图谱;

图3为该新型金属有机骨架材料的红外谱图;

图4为该新型金属有机骨架材料的固体紫外吸收图;

图5为该新型金属有机骨架材料的热重分析图;

图6为该新型金属有机骨架材料的导电性测试图;

图7为该新型金属有机骨架材料的有机胺气体响应与浓度关系图;

图8为该新型金属有机骨架材料对不同浓度乙二胺的响应与恢复曲线;

图9为该新型金属有机骨架材料对乙二胺气体响应的重复性测试曲线;

图10为该新型金属有机骨架材料对不同种类的有机挥发性气体的选择性图。

具体实施方式

以下结合附图与实施例对本发明作进一步详细描述,需要指出的是,其目的仅在于更好理解本发明的内容而非限制本发明的保护范围。

实施例1

新型导电金属有机骨架材料的制备:取0.08mmol In(NO3)2·4H2O,0.016mmol9,10-二(乙炔基吡啶)蒽,加入到反应容器中,向反应混合物中加入2.4×10-3mol>-3mol>3,之后将瓶放入100℃烘箱内反应120h,得到铟金属有机骨架材料粗品;用DMF洗涤所述铟金属有机骨架材料粗品后于100℃干燥,得到橙黄色片状的结晶金属有机骨架材料,产率为70%(以有机配体的量进行计算)。

该新型铟金属有机骨架材料的晶胞参数为12.954(2),14.453(5),18.956(4),102.510(12),94.165(8),109.364(7)。该新型铟金属有机框架材料属于三斜晶系,P-1空间群。

所述新型铟金属有机骨架材料的结构示意图见图1,这是一种一维带状配位骨架通过配体间相互作用堆积而成的三维超分子化合物。

如图2的PXRD谱图所示,由下至上分别为由单晶结构数据模拟的该新型铟金属有机骨架化合物的理论XRD谱图、实验合成的金属有机骨架化合物的PXRD谱图以及用作气敏传感材料的小尺寸铟金属有机骨架化合物的PXRD谱图。对比XRD谱图峰位,得出以下结论:合成的化合物为纯相,没有杂质;用于气敏传感材料的纳米尺寸产物的晶体结构与单晶结构相同。

图3为所述该新型多铟金属有机骨架材料的红外光谱,通过图谱的特征值也可以定性判定配体和金属配位。

图4为所述该新型金属有机框架材料的固体紫外吸收图,通过图谱可以看出该材料在可见区的吸收为400nm-650nm。

实施例2

取0.018mmol In(NO3)2·4H2O,0.009mmol>-3mol>-3molHNO3,之后将反应容器放入100℃烘箱内反应120h,得到铟金属有机骨架材料粗品;用DMF洗涤所述铟金属有机骨架材料粗品后于60℃干燥,得到橙黄色条状的晶体——纯化的铟金属有机骨架材料,产率为25%(以有机配体的量进行计算)。

实施例3

取0.018mmol In(NO3)2·4H2O,0.036mmol>-3mol>-3molHNO3,之后将反应容器放入100℃烘箱内反应120h,得铟金属有机骨架材料粗品;用DMF洗涤所述铟金属有机骨架材料粗品后于60℃干燥,得到橙黄色条状的晶体——纯化的铟金属有机骨架材料,产率为35%(以有机配体的量进行计算)。

实施例4

取0.018mmol In(NO3)2·4H2O,0.08mmol>-3mol>-3molHNO3,之后将反应容器放入100℃烘箱内反应120h,得到铟金属有机骨架材料粗品;用DMF洗涤所述铟金属有机骨架材料粗品后于60℃干燥,得到橙黄色条状的晶体——纯化的铟金属有机骨架材料,产率为15%(以有机配体的量进行计算)。

实施例5

以1.2×10-2mol>-3mol>

实施例6

以3.2×10-4mol>-3mol>

实施例7

以1.5×10-4mol>-3mol>3重复实施例1,得到长条状的晶体——纯化的铟金属有机骨架材料,产率为60%(以有机配体量进行计算)。

实施例8

以1.9×10-4mol>-3mol>3重复实施例1,得到长条状的晶体——纯化的铟金属有机骨架材料,产率为23%(以有机配体量进行计算)。

实施例9

以2.5×10-2mol>6代替1.6×10-3mol>3重复实施例1,得到长条状的晶体——纯化的铟金属有机骨架材料,产率为18%(以有机配体量进行计算)。

实施例10

以120℃代替100℃重复实施例1,得到橙黄色长条状的晶体——纯化的铟金属有机骨架材料,产率为36%(以有机配体量进行计算)。

实施例11

以80℃代替100℃重复实施例1,得到橙黄色长条状的晶体——纯化的铟金属有机骨架材料,产率为36%(以有机配体量进行计算)。

实施例12

以反应时间170h代替120h重复实施例1,得到橙黄色长条状的晶体——纯化的铟金属有机骨架材料,产率为58%(以有机配体量进行计算)。

实施例13

以反应时间48h代替120h重复实施例1,得到橙黄色长条状的晶体——纯化的铟金属有机骨架材料,产率为53%(以有机配体量进行计算)。

实施例14

以氯化铟代替实施例1中的四水合硝酸铟,重复案例1的实验,得到橙黄色形状不太规则的晶体——纯化的铟金属有机骨架材料,产率为50%(以有机配体量进行计算)。

实施例15

以乙酸铟代替实施例1中的四水合硝酸铟,重复案例1的实验,得到橙黄色形状不太规则的晶体——纯化的铟金属有机骨架材料,产率为35%(以有机配体量进行计算)。

实施例16

以硫酸铟代替实施例1中的四水合硝酸铟,重复案例1的实验,得到橙黄色形状不太规则的晶体——纯化的铟金属有机骨架材料,产率为30%(以有机配体量进行计算)。

实施例17

以2.4×10-3mol>-3mol>

实施例18

以2.4×10-3mol>-3mol>

实施例19

以1.8×10-2mol二甲基亚砜(DMSO)代替实施案例1中的1.8×10-2mol>

实施例20

由于制作气体传感原件需要小尺寸的材料,向混合物中加入4×10-5mol十二烷基硫酸钠,以反应时间72h代替120h重复实施例1,得到橙黄色梭形的晶体——纯化的小尺寸铟金属有机骨架材料,该化合物呈现出形状和尺寸均一的梭形结构,尺寸分布约为1微米,产率为90%(以有机配体量进行计算)。

导电性测试:用两探针测试法对单晶导电性进行测试。将实施例1中得到的单晶固定在两块导电银树脂上形成欧姆接触,得到很好的I-V线性曲线。选择多个不同的单晶样品在室温环境下进行导电性测试,得出该化合物的平均电导率约为1.2×10-6S>-1。

气体传感实验:(1)元件制作,将小尺寸的铟金属有机骨架材料置于研钵中,加去离子水充分研磨,成糊状后,涂覆在带有金电极的陶瓷管上,烘干,在空气中老化数小时;(2)响应测试,采用静态液体配气法得到了以空气为载气的各种不同体积分数的挥发性有机胺目标气体.通过测试气敏元件在不同体积分数挥发性有机气体的阻抗变化得出响应-浓度曲线,计算公式如下:

Response=(Ra─Rg)/Ra×100%

其中其中Ra为元件在空气中的电阻值,Rg为元件在被检测气体中的电阻值。测曲线显示传感器的响应值随气体浓度变化呈线性关系,这表明该新型铟金属有机骨架材料对挥发性有机胺气体的响应效果很好。

实施例21

称量实施例20中得到的样品10mg,置于研钵中,加去离子水充分研磨,成糊状后,涂覆在带有金电极的陶瓷管上,烘干,在空气中老化后,将乙二胺(300-1800ppm)通入测试管进行齐敏性测试。气敏元件的响应与乙二胺浓度呈现出很好的线性关系,900ppm乙二胺对应的气体响应值为43。测试结果表明该新型铟金属有机骨架材料对挥发性有机胺的气体响应效果很好。

实施例22

按实施例21量取并处理样品,测试气体为1,2-丙二胺(300-1800ppm)。实验步骤同实施例21。气敏元件的响应与1,2-丙二胺浓度仍呈现出很好的线性关系,900ppm 1.2-丙二胺对应的气体响应值为34。测试结果表明该新型铟金属有机骨架材料对1.2-丙二胺的气体响应效果很好。

实施例23

按实施例21量取并处理样品,测试气体为1,3-丙二胺(300-1800ppm)。实验步骤同实施例21。气敏元件的响应与1,3-丙二胺浓度仍呈现出很好的线性关系,900ppm 1,3-丙二胺对应的气体响应值为32。测试结果表明该新型铟金属有机骨架材料对1,3-丙二胺的气体响应效果很好。

实施例24

按实施例21量取并处理样品,测试气体为二乙胺(300-1800ppm)。实验步骤同实施例21。气敏元件的响应与二乙胺浓度仍呈现出很好的线性关系,900ppm二乙胺对应的气体响应值为24。测试结果表明该新型铟金属有机骨架材料对二乙胺的气体响应效果很好。

实施例25

按实施例21量取并处理样品,测试气体分别为氨气、一氧化碳、甲苯、甲醛、丙酮、乙醇,测试浓度与实验步骤同实施例21。气敏元件的响应与上述气体浓度未呈现出很好的线性关系,当气体浓度为900ppm时,气敏元件的响应值分别为9.59、8.97、7.50、6.49、4.66、3.1。测试结果表明该新型铟金属有机骨架材料对上述气体选择性较差。

以上内容是结合具体的优选实施方案对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本领域的普通科研人员来说,可以根据本发明的技术方案和发明构思,做出相应改变和替代,而且性能或用途相同,都应当视为本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号