首页> 中国专利> 一种钣金拉伸过程声发射信号识别方法

一种钣金拉伸过程声发射信号识别方法

摘要

本发明公开了一种钣金拉伸过程声发射信号识别方法,利用声发射检测系统采集钣金拉伸过程中的声发射信号,对声发射信号的傅里叶变换或短时傅里叶变换进行非负矩阵分解,提取其在低维子空间映射的特征系数,用于构造训练字典和测试样本,并利用稀疏表示方法实现对拉伸过程不同阶段的表征与识别。该方法通过对声发射信号的非负矩阵分解和稀疏表示分析,可以实现声发射对应拉伸过程的自动识别,且识别率高。

著录项

  • 公开/公告号CN113052018A

    专利类型发明专利

  • 公开/公告日2021-06-29

    原文格式PDF

  • 申请/专利权人 北京工业大学;

    申请/专利号CN202110258631.3

  • 发明设计人 焦敬品;孙延东;

    申请日2021-03-09

  • 分类号G06K9/00(20060101);G06K9/62(20060101);

  • 代理机构11203 北京思海天达知识产权代理有限公司;

  • 代理人沈波

  • 地址 100124 北京市朝阳区平乐园100号

  • 入库时间 2023-06-19 11:39:06

说明书

技术领域

本发明涉及一种基于非负矩阵分解和稀疏表示的板材拉伸过程声发射信号 识别方法,该方法适用于金属板材拉伸过程的声发射信号识别,属于无损检测领 域。

背景技术

钣金由于具有重量轻、强度高、成本低、大规模量产性能好等特点,在电子 电器、通信、汽车工业、医疗器械等领域广泛应用。钣金成形涉及冲压、弯曲、 拉伸等多种加工手段。同时,在钣金成形过程中,材料经历复杂的应力-应变状 态。为此,这些加工手段的工艺参数对钣金成形质量及稳定性有很大的影响。因 此,研究钣金成形过程中材料的应力-应变状态对于提高钣金成形质量及稳定性 具有重要意义。

声发射是指材料因局部能量的快速释放而发出瞬态弹性波的现象。作为一种 动态监测技术,声发射技术已经被应用于多种材料加工过程的监测[1-3]。例如, 张颖[4]对四种不同晶粒度的钢试件单轴拉伸过程进行了声发射检测,利用声发 射信号的幅值、能量和撞击数等特征参数描述了晶粒度对材料拉伸过程中声发射 特征的影响。丁利伟[5]利用声发射技术对复合材料拉伸过程进行了监测,通过 分析拉伸过程中声发射信号的能量、振铃技术、幅值等特征参数,将拉伸过程分 为了三个阶段。诸如以上文献所述,利用声发射技术进行拉伸过程监测的研究工 作很多,但目前已有文献仅停留在研究不同拉伸过程中声发射信号特征参数的变 化规律,鲜见有利用声发射技术进行拉伸过程状态表征的研究。

本发明涉及一种钣金拉伸过程声发射信号识别方法。通过对钣金拉伸过程声 发射信号进行非负矩阵分解,提取其在低维子空间映射的特征系数,用于构造训 练字典和测试样本,并利用稀疏表示方法实现对拉伸过程不同阶段的表征与识 别。

发明内容

本发明的目的在于提供一种基于非负矩阵分解和稀疏表示的拉伸过程声发 射信号识别方法,通过该方法可以自动实现声发射信号对应的拉伸过程的识别。 本方法通过对钣金拉伸过程声发射信号进行非负矩阵分解,提取其在低维子空间 映射的特征系数,用于构造训练字典和测试样本,并利用稀疏表示方法实现对拉 伸过程不同阶段的表征与识别。

本发明提出的一种基于非负矩阵分解和稀疏表示的钣金拉伸过程识别方法, 其基本原理如下:

在拉伸试件两端放置声发射传感器,并置于拉伸试验机上,用于接收拉伸过 程的声发射信号。根据拉伸试验机获取的应力应变曲线,判定拉伸过程不同力学 阶段的时间范围,进而提取不同阶段的声发射时域信号。对得到的声发射信号进 行傅里叶变换(FastFourier Transform,FFT)或短时傅里叶变换(Short Time Fourier Transformation,STFT),在此基础上对其进行非负矩阵分解(Nonnegative Matrix Factorization,NMF),构造出非负训练字典V。本发明以声发射信号的短 时傅里叶变换后的数据为例,用以说明基于非负矩阵分解和稀疏表示的钣金拉伸 过程声发射信号识别方法。

训练字典V∈R

根据Lee和Seung的乘法更新规则,同时以欧氏距离为目标函数求解非负矩 阵,得到低秩矩阵W和H。

基于欧式距离的目标函数的求解问题可以通过最优化算法进行求解,而梯度 下降法是用来求解极小值问题的有效方法,沿着负梯度方向,反复迭代求解,最 后就能解出局部最小值。应用梯度下降法迭代求解式(1):

在计算过程中,随机选取非负正态分布的初始化矩阵W与H,在定义适当 的迭代次数之后,迭代计算即可得到最优的W和H。迭代求解出的基矩阵W是V的基空间,根据穆尔-彭罗斯广义逆矩阵,求解其子空间矩阵W

稀疏表示的核心思想是把同类训练样本视为一组基,将测试样本在不同类 基上线性表示,然后通过求解一个l

假设有c类样本信号,其中每类有n个训练样本,则第i类训练子字典Y

Y

其中,m是样本信号的数据长度。

假设y为第i类测试样本,y∈R

y=Ya,a=(0,…0

其中,Y=[Y

在对测试样本y进行稀疏表示分类时,需要对稀疏系数a进行求解,该求解 过程应该满足:

其中,ε是测试样本重构误差的容忍极限,a'是稀疏系数a的最稀疏解。

而当稀疏系数a足够稀疏时,l

其中λ是正则化参数,其取值范围为(0,1)。

则测试样本y在不同类别子字典下的重构信号y′

y′

a′

error

根据误差值的最小原则判断当前测试样本y所属的类别:

本发明的技术方案如下:

本发明所采用的装置参见图1,包括拉伸试验机1、两块铝板试件2、声发 射传感器3、前置放大器4、全信息声发射分析仪5和计算机(配套分析软件)6。 设定拉伸试验机1的运行参数并拉伸铝板试件2,并由两个声发射传感器3同时 采集声发射信号,然后通过前置放大器4进行放大,并由全信息声发射分析仪5 记录双通道信号,最后在计算机6上进行信号分析、处理。

本发明提出的一种钣金拉伸过程声发射信号识别方法是通过以下步骤实现 的:

步骤一:按照图1所示的检测装置系统搭建拉伸声发射检测系统,系统包括 拉伸试验机1、铝板试件2、声发射传感器3、前置放大器4、全信息声发射分析 仪5和计算机6(配套分析软件)。根据拉伸试验机获得的应力应变曲线,判定 拉伸过程各个力学阶段的时间范围,随后在拉伸过程各阶段分别截取n组(共 5n组)信号。基于MATLAB软件对所有声发射信号进行截断,获得数据长度为 m的信号。在此基础上,对声发射信号进行短时傅里叶变换,得到5n个时频图, 其中每个时频图尺寸为w*l。

步骤二:分别随机抽取拉伸过程各阶段n组信号中的n

步骤三:设定非负矩阵分解维度为N,迭代次数M,并使用随机非负正态 分布函数初始化W和H,通过式(2)对所有的训练子字典v

步骤四:基于穆尔-彭罗斯广义逆矩阵,求解基矩阵W的子空间W

步骤五:同理,测试样本集v

步骤六:通过公式(6)求解测试样本集y

步骤七:比较所有测试样本在不同阶段上重构信号的误差,并根据误差值的 最小原则判断所有测试样本的类别。最后,重复步骤二、三、四、五、六和七的 实验,得到十次平均后的基于非负矩阵分解和稀疏表示的声发射信号拉伸过程的 识别率。

本发明具有以下优点:(1)可以自动实现声发射信号对应拉伸过程的识别; (2)具有更高的识别准确率;(3)该算法运算速度快。

附图说明

图1拉伸声发射检测系统图。

图2铝板拉伸过程的应力应变曲线。

图3基于非负矩阵分解和稀疏表示的声发射信号识别率图。

图4本方法的实施流程图。

具体实施方式

下面结合具体实验对本发明作进一步说明:

本实验实施过程包括以下步骤:

步骤一:按照图1所示的检测装置系统搭建拉伸声发射检测系统,系统包括 拉伸试验机1、铝板试件2、声发射传感器3、前置放大器4、全信息声发射分析 仪5和计算机(配套分析软件)6。根据拉伸试验机获得的应力应变曲线如图2 所示,判定拉伸过程各个力学阶段的时间范围如表1所示,随后在拉伸过程各阶 段分别截取110组(共550组)信号。基于MATLAB软件对所有声发射信号进 行截断,获得频率3MHz、数据长度为2048的信号。最后,对每个声发射信号 进行短时傅里叶变换,得到550个时频图,其中每个时频图尺寸为129*18。

步骤二:分别随机抽取拉伸过程各阶段110组信号中的100组(共500组) 声发射信号的时频图,并转换为列向量,每一列代表一个信号,组成各阶段训练 子字典v

步骤三:设定非负矩阵分解维度为240,迭代次数500,并使用随机非负正 态分布函数初始化W和H。通过式(2)对所有的训练子字典v

步骤四:基于穆尔-彭罗斯广义逆矩阵,求解基矩阵W的子空间W

步骤五:同理,测试样本集v

步骤六:通过公式(6)求解测试样本集y

步骤七:比较所有测试样本在不同阶段上重构信号的误差,并根据误差值的 最小原则判断所有测试样本的类别。最后,重复步骤二、三、四、五、六和七的 实验,得到十次平均后的非负矩阵分解的稀疏表示分类算法识别率如图3所示。

与现有分类方法相比,本发明具有以下优点:(1)具有更高的识别准确率, 适应更复杂种类的样本;(2)适用于高维数据,非负分解后的训练字典具有低维 和稀疏性的特点;(3)具有更快的运算速度,较少程序运行时间。

本方法的实施流程图如图4所示。

表1拉伸过程各阶段时间范围

以上是本发明的一个典型应用,本发明的应用不限于此。

参考文献

[1]Behrens B A,Bouguecha A,Buse C.Potentials of in situ monitoring ofaluminum alloy forging by acoustic emission[J].Archives of Civil andMechanical Engineering,2016,16(4):724-733.

[2]Hao S,Ramalingam S,Klamecki B E.Acoustic emission monitoring ofsheet metal forming:characterization of the transducer,the work material andthe process[J].Journal of Materials Processing Technology,2000,101(1–3):124-136.

[3]张进,柴孟瑜,项靖海,段权,李丽婵.316LN不锈钢断裂过程的声 发射特性[J].材料研究学报,2018,32(6):415-422.

[4]张颖,吴昊,高唅,王兵,张维.20#钢不同晶粒度试件拉伸损伤试验的声 发射特性研究,应用声学,2017,36(3):228-232.

[5]丁利伟,沈玉娣.复合材料拉伸过程的声发射特性研究.无损检 测,2009,31(10):781-784.

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号