首页> 中国专利> 一种基于未确知测度理论的机载设备电磁兼容性分级方法

一种基于未确知测度理论的机载设备电磁兼容性分级方法

摘要

本发明公开了一种基于未确知测度理论的机载设备电磁兼容性分级方法,包括以下步骤:S1.测量机载设备电磁兼容性的分级评价指标,从而建立分级评价指标集;S2.应用未确定测度理论建立分级评价指标的测度函数;S3.求解机载设备电磁兼容性的单个指标评价矩阵;S4.利用信息熵法求各个电磁兼容性的分级评价指标权重;S5.求解各机载设备的综合属性测度;S6.求解飞机上机载设备电磁兼容性量化分级或分类;S7.获得机载设备电磁兼容设计优先级以及设计权重。本发明评价指标的互相关性低,可测量可考核,可作为系统级电磁兼容指标分配的优先级策略,为飞机全系统电磁兼容性量化设计提供理论依据。

著录项

  • 公开/公告号CN113049900A

    专利类型发明专利

  • 公开/公告日2021-06-29

    原文格式PDF

  • 申请/专利权人 北京航空航天大学;

    申请/专利号CN202110309574.7

  • 发明设计人 李尧尧;苏东林;蔡少雄;秦丽峰;

    申请日2021-03-23

  • 分类号G01R31/00(20060101);

  • 代理机构51260 成都巾帼知识产权代理有限公司;

  • 代理人邢伟

  • 地址 100000 北京市海淀区学院路37号

  • 入库时间 2023-06-19 11:40:48

说明书

技术领域

本发明涉及电磁兼容领域,特别是涉及一种基于未确知测度理论的机载设备电磁兼容性分级方法。

背景技术

电磁兼容性是指电子电气设备在其预期的电磁环境中互相兼容工作的能力,当飞机平台上机载设备间因“时、空、频、能”资源冲突造成错综复杂电磁互扰问题时,目前一般采用经验法逐次选取单个设备节点进行调整与控制,因“牵一发而动全身”这种凭经验的主观设计方法极易因选取不当造成更复杂的互扰问题,故要对飞机电磁兼容实施最优化工程设计,就需要全局角度出发,确定系统级电磁兼容性设计中节点控制的优先级次序。正确步骤为:首先需要对机载设备电磁兼容性做准确定量评价,之后计算单个设备/分系统的权重,最后根据权重获得最佳的设计次序与设计原则。但是,由于决定机载设备电磁兼容性因素的多样性、复杂性、模糊性,国内外尚未就评估机载设备电磁兼容性等级的方法达成共识。

目前评价机载设备电磁兼容性一般采用国家军用标准(GJB151系列)电磁兼容性检测试验,通过检测结果与标准极限值对比判断设备是否符合电磁兼容性,只有通过和不通过两种等级,除特殊情况办理超差外,一般情况下装配到飞机上的机载设备都通过了检测试验,但是装配到一起后设备彼此之间的电磁互扰问题常有发生,此时再进行调整性设计就缺乏了设计的依据。

发明内容

本发明的目的在于克服现有技术的不足,提供一种基于未确知测度理论的机载设备电磁兼容性分级方法,从电磁兼容设计全局角度出发,确定系统级电磁兼容性设计中节点控制的优先级次序,并有效减小电磁兼容性分级辨识中的不确定性。

本发明的目的是通过以下技术方案来实现的:一种基于未确知测度理论的机载设备电磁兼容性分级方法,包括以下步骤:

S1.测量机载设备电磁兼容性的分级评价指标,从而建立分级评价指标集;所述分级评价指标包括:干扰门限、敏感门限、频谱占用率、互耦影响度、互耦被影响度、平台安全性影响及对平台性能影响;

S2.根据分级评价指标,应用未确定测度理论建立分级评价指标的测度函数;

S3.依据分级评价指标的测度函数,求解机载设备电磁兼容性的单个指标评价矩阵;

S4.基于分级评价指标的测度函数,利用信息熵法求各个电磁兼容性的分级评价指标权重;

S5.根据分级评价指标的测度函数和分级评价指标的权重,依据指标权重及属性测度,求解各机载设备的综合属性测度;

S6.基于分级评价指标的测度函数,根据置信度准则,求解飞机上机载设备电磁兼容性量化分级或分类;

S7.基于分级评价指标的测度函数,获得机载设备电磁兼容设计优先级以及设计权重。

本发明的有益效果是:(1)对机载设备电磁兼容性能分级,评价指标的互相关性低,过程清晰明确。

(2)针对机载设备的各评价指标,可测量可考核可评价进而获得量化值,故可有效减小电磁兼容性分级辨识中的不确定性,提升方法的可信性。

(3)根据设备对应各个评价指标的测量值或统计值,计算各个设备的指标测度,进一步计算综合测度,最后评价获得电磁兼容性级别,全自动评价方法可使电磁兼容性分级辨识更加方便快捷。

(4)对机载设备中的电磁兼容性进行量化分级,物理意义明确,对明确设计重点进而提高飞机电磁兼容设计的“效费比”具有显著支撑作用。

附图说明

图1是机载设备电磁兼容性分级评价指标集;

图2是本发明的方法流程图;

图3为本发明中干扰门限测度函数图;

图4为本发明中敏感门限测度函数图;

图5为本发明中频谱占用率测度函数图;

图6为本发明中互耦影响度测度函数图;

图7为本发明中互耦合被影响度测度函数图;

图8为本发明中对平台安全性影响测度函数图;

图9为本发明中对平台性能影响测度函数图。

具体实施方式

下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。

未确知信息是一种新的不确定性信息,本发明可有效地避免人为主观因素的影响,评价过程简单结果精确,针对机载设备(也可用于分系统)特点首先构造了各评价指标的单测度指标函数,确定出各评价指标的未确知测度值;然后利用熵权法计算了影响机载设备/分系统电磁兼容性因素的权重;最后用置信度准则进行判别分级。

对机载设备在平台上的电磁兼容性分级评价指标集包括三个层次,第一,机载设备电磁兼容特性指标;第二,系统间电磁兼容性特性指标;第三,飞机平台安全性指标。分级评价指标集见图1所示。设备/分系统电磁兼容特性指标包括:干扰门限、敏感门限、频谱占用率;系统间电磁兼容性特性指标包括:互耦影响度、互耦被影响度;飞机平台安全性指标包括:平台安全性影响、对平台性能影响。对具体机载设备/分系统电磁兼容性分级可结合实际的情况对分级评价指标集进行裁剪。

设备/分系统电磁兼容性分级评价指标的基础数据来源于两个方面,一是GJB151A测试数据,二是设备的标称参数。其中GJB151A测试数据包括RE、RS、CE、CS四类测试数据。设备的标称参数包括设备的发射特性、敏感特性、带外特性、对平台安全性及性能的影响的指标。根据以上数据可获得设备/分系统电磁兼容性分级评价指标的量值,具体地

如图2所示,一种基于未确知测度理论的机载设备电磁兼容性分级方法,包括以下步骤:

S1:建立并测量分级评价指标

所述分级评价指标包括:干扰门限、敏感门限、频谱占用率、互耦影响度、互耦被影响度、平台安全性影响及对平台性能影响;

所述机载设备包括信号发射设备和信号接收设备,所述信号发射设备包括射频发射设备和非射频发射设备;所述信号接收设备包括射频接收设备的非射频接收设备;在本申请的实施例中,认为带有天线的发射/接收设备称为射频发射/接收设备,不带有天线的发射/接收设备称为非射频发射/接收设备;

测量过程包括:

S101.测量干扰门限,干扰门限是指机载设备经耦合通道输出的干扰信号门限;

测量干扰门限主要针对于信号发射设备,对于信号发射设备中的射频发射设备,测量的干扰门限为发射功率或场强0dB的全向天线1m处接收的最大信号幅度;对于信号发射设备中的非射频发射设备,测量的干扰门限为工作条件下的最大发射电平,在进行测量时,取 10kHz-18GHz电场辐射发射时的测试最大值作为干扰门限;

对于所有的信号发射设备,依次测得其对应的干扰门限;

S102.测量敏感门限,敏感门限是指机载设备敏感度试验测试到的信号敏感度;

测量敏感门限主要针对于信号接收设备;对于信号接收设备中的射频接收设备,测量的敏感门限为灵敏度;对于信号接收设备中的非射频接收设备,测量的敏感门限为所有敏感频点中的最小敏感阈值;所有敏感频点中最小敏感度的获取方式为:在每一个敏感频点下,测量使得非射频接收设备无法正常工作的信号强度,取其中的信号强度最小值作为最小敏感阈值;

对于所有信号接收设备,依次测得其对应的敏感门限;

S103.测量频谱占用率。频谱占用率为设备所占用频谱/总频谱宽度。将机载设备所有频段 F={f

S104.计算各设备互耦影响度。方法如下:首先按照文献[1]中能量传输模型,求设备之间的干扰余量,记为C

S105.计算各设备互耦被影响度。由

S106.测量平台安全性影响,该项指标为离散性指标,确定如下:

量值1:机载设备受扰,导致燃油、电爆装置发生爆炸,或机上易燃品起火;

量值2:机载设备受扰,导致导航、定位、通信、飞行控制关键设备或器件发生损坏或误动作,从而严重威胁飞行安全;

量值3:机载设备受扰,导致这些设备、器件发生完全损坏或性能指标下降;

量值4:机载设备受扰,导致设备发生局部结构破损和性能降低,使设备或器件的使用寿命降低;

量值5:机载设备受扰,对飞行器平台安全无影响;

S107.测量平台性能影响,该项指标为离散性指标,在明确某飞机的性能指标后,确定如下:

量值1:机载设备受扰,导致平台性能丧失,使得机载设备一项或几项性能指标已趋近于0;

量值2:机载设备受扰,导致平台性能指标恶化,使得机载设备一项或几项性能指标恶化明显;

量值3:机载设备受扰,导致平台性能指标显著降低,使得机载设备一项或几项性能指标下降明显;

量值4:机载设备受扰,导致平台性能指标轻微降低,使得机载设备一项或几项性能指标不能完全达标;

量值5:机载设备受扰,对飞行器性能无影响。

S2:建立测度函数

各项指标定义如下:干扰门限I

表1分级判据指标

建立的各指标测度函数如图3-图9所示。

对于单指标I

采用上式及表1中的判据,可依次求解干扰门限的测度函数:χ

S3:求机载设备/分系统电磁兼容性的单指标评价矩阵

设需要预测机载设备电磁兼容性分级的评价对象R有n个,则评价对象空间 R={R

S4:求解分级评价指标的权重

设ω

S5:计算机载设备/分系统电磁兼容性的多指标评价矩阵

定义等级k的多指标综合属性测度μ

S6:采用置信度识别法则对机载设备/分系统电磁兼容性分级

为了确定设备/分系统电磁兼容性的等级,引入置信度识别准则:即取置信度σ≥0.5,且 C

S7:设备权重排序

除了要判断出设备/分系统电磁兼容性的级别外,还需要得出设计优先级,即对电磁兼容性重要度进行排序,令C

其中Q

在本申请的实施例中,以对某飞机平台上由任务系统、载机设备、非射频设备等组成的设备集进行分级为例,各设备名称为:设备1、设备2、设备3、设备4、设备5、设备6、设备7、设备8。分级的具体过程如下:

第一步:建立并测量分级评价指标

该飞机选用的分级评价指标包括:干扰门限、敏感门限、频谱占用率、互耦影响度、互耦被影响度、平台安全性影响、对平台性能影响。采用设备各分级评价指标的测量方法,对各个设备的各指标测量结果表2所示。

表2分级单项指标的量值

第二步:建立测度函数

选用表1分级判据指标作为分级依据,建立的各指标测度函数如图3-图9所示。

第三步:求机载设备/分系统电磁兼容性的单指标评价矩阵

依据单项指标的测度函数,求得属性测度值。以设备1为例,其测度属性结果如表3所示。

表3设备1的属性测度

第四步:求解分级评价指标的权重

依据信息熵方法求设备1的各分级指标的的权重,结果如表4所示。

表4设备1的指标权重

第五步:计算机载设备/分系统电磁兼容性的多指标评价矩阵

利用加权公式,则该设备的加权测度如表5所示。

表5设备1的综合属性测度

第六步:采用置信度识别法则对机载设备/分系统电磁兼容性分级

按照置信度评价方法,若采用本评估体系,则设备1的电磁兼容性分级为2级,采用该方法对表2中的设备进行分级,结果如下:

表6机载设备电磁兼容性分级结果

第七步:设备权重排序

为了进一步得到更清晰明了的设计优先级和权重,按照统筹学中重要度赋值依据,不妨设C

Q={Q

={4.695 3.793 3.731 3.762 2.938 3.378 2.712 3.04}

采用本发明方法对设备1、设备2、设备3、设备4、设备5、设备6、设备7、设备8飞机平台上的电磁兼容性进行了分级,分级结果表明,设备1级别最高,权重最高,在系统级电磁兼容性设计指标分配时,应优先设计,且应尽量保证该设备性能指标不变动,设备2-设备4级别为3级,应其次进行设计,在系统级电磁兼容性设计指标分配时可轻微变动,设备 5-设备8级别最低,应最后进行指标分配,在系统级电磁兼容性设计指标分配时可做较大变动。显然,设备1为任务设备,决定了飞机平台的性能,应优先进行指标分配。设备2-设备 4分别为导航、通信与测距设备,系统级电磁兼容设计指标,如带外抑制、天线布局可适度调整,设备5-设备8则为机电类设备,总体单位在电磁兼容设计时,可对设备厂家提出一定的极限值要求。以上情况与实际相符,证明了本发明方法的正确性。

以上虽然描述了本发明的具体实施方法,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明原理和实现的前提下,可以对这些实施方案做出多种变更或修改,因此,本发明的保护范围由所附权利要求书限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号