首页> 中国专利> 感潮水闸闸前橄榄型调蓄湖的布置方法

感潮水闸闸前橄榄型调蓄湖的布置方法

摘要

本发明涉及一种水利工程设计方法。技术方案是:感潮水闸闸前橄榄型调蓄湖的布置方法,所述闸前橄榄型调蓄湖的设计参数按照以下公式确定:S湖/S河=0.0024q2‑0.1049q+2.8551;S河=LB;θ=sin‑1(L/2/R);S湖=LB+(4θπ/360‑sin2θ)R2;式中:q为单宽流量(单位宽度流量),m3/s.m;S河为与调蓄湖同等长度的河道面积;S湖为调蓄湖面积,包含该段河道面积;R为调蓄湖岸边线圆弧半径;B为河道宽度;L为调蓄湖所在的河道长度;θ为调蓄湖两侧圆弧与半径所成夹角的一半。该方法能提高闸上河道的排涝能力,降低上游河道水位,保护闸前河道的防冲安全。

著录项

说明书

技术领域

本发明涉及一种水利工程设计方法,具体是感潮水闸闸前橄榄型调蓄湖的布置方法。

背景技术

感潮水闸是沿海平原地区常见的水工建筑物,其下游一般为开敞式海域,当关闭闸门时,具备拦洪、挡潮、蓄水等功能,可满足上游取水、通航及防御海洋灾害等需求;当开启闸门时,具备泄洪、排涝、甚至通航等功能,是平原河网中关键的控制性建筑。一般来说,影响感潮水闸排涝能力的主要因素有工程规模和布置、上游集雨面积、降雨量、河网布局、外海侧潮水位以及调度运行方式等,成为了决定区域河网洪涝灾情及减灾能力的关键控制因素。

根据《水闸设计规范SL265-2016》要求,水闸的“轴线宜与河道中心线正交,其上游河道直线段长度不宜小于5倍水闸进口处水面宽度”;因此水闸平面布置中上游河道(即闸上河道1)一般都是顺直河道(如图1),并通过两侧收缩导墙2与闸室3相连接(图中还有外海或下游河道4)。相对内河水闸,该类水闸具有以下几方面特点:一是河底纵向高程坡降平缓,在出口段几乎为零坡降状态,排涝时闸上河网水流的动力存在不足;二是排涝水闸闸下潮位变幅大,在平高潮位时需关闸挡潮,避免咸水入侵,低潮位时则开闸泄水,因此这类候潮排涝也叫“半夕排涝”;三是防冲压力严峻,在台风及强降雨期间,该类闸多为抢排、快排状态,闸室上下游水位落差接近或超过设计值,极易造成闸上河道及闸下防冲段冲刷严重,危及闸室及沿线堤防安全。

在以往设计及运行中,由于对平原河网及感潮水闸的排涝特性认识不足,按照规范或者经验进行设计的感潮水闸,普遍存在水闸规模和闸前河道规模不匹配的问题,即闸室规模偏大或河道规模偏小。具体表现为:当外海中低潮位时,水闸闸门全开泄洪,此时闸前水位坡降较陡,泄洪时甚至出现闸前小段河道水流几乎见底,而中上游河网中的水位却下降缓慢,甚至是毫无变化情况,该问题一方面降低了排涝闸的排涝能力,另一方面也将造成闸前河道普遍冲刷,危及两侧堤防的稳定与安全。如南台头闸在1993年至2004年间多次排涝后,闸上4km河道形成严重冲刷,河底最大冲深可达6m(河道断面冲刷状态见图2),为避免河道冲刷进一步加重,只能采取控制过闸流量等措施,导致工程的排涝效益大大降低。又如曹娥江支流上的新三江闸,闸室规模和河道宽度几乎等同,闸门开启瞬间闸上200m左右河段的水位几乎见底,导致了闸上段河床冲刷严重,严重制约着闸站的排涝效益。

发明内容

本发明的目的是克服上述背景技术的不足,提供一种适用于感潮水闸的橄榄型调蓄湖的布置方法。该方法能提高闸上河道(网)的排涝能力,降低上游河道(网)水位,保护闸前河道的防冲安全。

本发明提供的技术方案是:感潮水闸闸前橄榄型调蓄湖的布置方法,所述闸前橄榄型调蓄湖的设计参数按照以下公式确定:

S

S

θ=sin

S

式中:q为单宽流量(单位宽度流量),m

调蓄湖5布置时,其上游连接翼墙6设置为圆弧(上游连接翼墙的水平面投影为圆弧)。

作为优选,上游连接翼墙6可设置反弧连接。

作为优选,调蓄湖所在的河道长度L,位于河道直线段内。

本发明的原理是:本发明中,水力学模型采用基于平面二维不可压缩雷诺(Reynolds)的纳维埃-斯托克斯(Navier-Stokes)浅水方程模型,研究在明确水闸设计流量、闸上河道宽度、河底及闸底高程等设计参数基础上开展。分析结果表明,闸前设置橄榄型调蓄湖后,上游河道内的水位能够明显降低,同时过闸的排涝流量也有所增大,闸上水位降低幅度与S

本发明的有益效果是:本发明提出了感潮水闸闸前设置橄榄型湖泊及计算方法,通过该方法得到的闸前橄榄型湖泊方案可显著提高闸上河道(网)的排涝能力,降低上游河道(网)水位,保护闸前河道的防冲安全,是区域水网规划设计的一种新思路及方法,可为水网建设中快速排涝提供关键技术支撑。

附图说明

图1为常规水闸的结构布置图。

图2为常规水闸闸上河道冲刷前后横断面图。

图3为闸前橄榄型调蓄湖工程布置示意图。

图3-1为上游连接翼墙6采用反弧连接示意图。

图4为平面布置形式公式推导流程图。

图5为模型范围示意图。

图6为单宽流量q=15m

图7为沿程洪水位变化方案对比图。

图8为调蓄湖段流场图。

图9为调蓄湖面积比与单宽流量关系拟合曲线图。

具体实施方式

以下结合附图进一步说明本发明。

本发明所述技术方案,经过以下步骤(流程见图4)推导获得:

步骤一,获取设计参数

根据浙江温州某水闸的布置,河道宽度B取55m,闸室净宽b为35m,河底高程为0m,闸室下游潮位h

步骤二,选择水力学分析模型

水力学分析可采用平面二维(三维)数学模型或水工物理模型,考虑计算的便利性,选用平面二维数学模型进行分析,模型下游边界至闸下100m范围,上游边界至闸上2.5km,符合常规计算要求,模型范围及网格布置见图5。

步骤三,确定在相同单宽流量下,最低水位对应的S

本次计算先取单宽流量q=15m

步骤四,获取不同单宽流量与最优S

继续计算单宽流量q为7、10、20、25m

S

步骤五,计算获得调蓄湖其余布置参数R、θ值

按上一步得到的相关性公式计算S

S

θ=sin

S

实施例1(浙江温州某水闸)

步骤一,获取水闸及上游河道设计参数,如流量Q=350m

步骤二,根据公式S

q=10m

S

S

R=902m

Θ=17.05°

L=550m。

获得的调蓄湖平面图见图8。

经测算,设置调蓄湖后,相对闸上顺直河道方案,调蓄湖中段最大流速可由顺直河道的2.04m/s降低至1.08m/s,降幅约50%;开闸初期闸前水位降幅减少0.5m以上,排涝稳定后闸上水位抬高约0.05m/s。

因此,调蓄湖方案能够显著降低闸前河道的流速,减少闸上冲刷对水闸两侧堤防及水闸自身基础稳定安全的影响;其次,调蓄湖方案还削弱了开闸初期闸上水位降幅,提高了排涝稳定后闸上的控制水位,能在一定程度上提高水闸及闸上河网的排涝能力,降低灾害影响。

尽管已结合优选的实施案例描述了本发明,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围的情况下,能够对在这里列出的主题实施各种改变、同等物的置换和修改,因此本发明的保护范围当视所提出的权利要求限定的范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号