首页> 中国专利> 一种针对复杂地形考古工作的三维数据采集方法及装置

一种针对复杂地形考古工作的三维数据采集方法及装置

摘要

本发明涉及针对复杂地形考古工作的三维数据采集方法及装置,采集方法包括步骤:S1、控制三维数据采集装置进入到考古现场中;S2、通过红外摄像装置对行进路径进行观察;S3、采集考古现场的激光点云数据;S4、粗配准;S5、精配准;S6、去噪处理;S7、精简处理;S8、结合点云特征进行三维建模;S9、完成三维数据采集。三维数据采集装置包括安装壳体、多功能环境检测装置、数据采集机构、行进驱动机构、辅助支撑机构和行进转向机构。本发明的有益效果是:本发明提出的针对复杂地形考古工作的三维数据采集方法,与小体积、机动性强的三维数据采集装置相匹配,能够更加方便的完成复杂地形的考古数据采集工作。

著录项

  • 公开/公告号CN113284172A

    专利类型发明专利

  • 公开/公告日2021-08-20

    原文格式PDF

  • 申请/专利权人 浙大城市学院;

    申请/专利号CN202110816655.6

  • 发明设计人 任伟;杨程;王慕华;沈灵;刘睿良;

    申请日2021-07-20

  • 分类号G06T7/33(20170101);G06T5/00(20060101);G06T17/00(20060101);

  • 代理机构33101 杭州九洲专利事务所有限公司;

  • 代理人张羽振

  • 地址 310015 浙江省杭州市拱墅区湖州街51号

  • 入库时间 2023-06-19 12:18:04

说明书

技术领域

本发明涉及信息技术领域,具体涉及一种针对复杂地形考古工作的三维数据采集方法及装置。

背景技术

中国作为世界文明古国之一,很早就有学者注意到进行古代遗迹考察和古代遗物研究的重要价值。以田野调查发掘为基础的近代考古学,在中国兴起较迟,19世纪末到20世纪30年代,一些帝国主义国家派遣的探险家、考察队,曾潜入中国边疆地区进行活动;20世纪20年代后期,中国学术机关开始进行周口店、殷墟等遗址的发掘,标志着中国考古学的诞生;建国以后,调查发掘遍及全国各个地区,逐步建立起完备的中国考古学体系。

在考古工作过程中,常需要使用激光三维设备进行文物遗产三维数字记录,目前在对文物或遗址进行三维数字记录时,其处理方法较为繁琐,数据处理效率较低,且影响后续三维仿真建模的精度;除此之外,在考古过程中,常会遇到一些人工无法到达的复杂地面环境,或者某些考古现场,空间较为狭小,考古人员无法进入或者无法在内进行正常活动,从而无法顺利进行文物数字记录工作,同时某些砂土木器石刻等文物对人类呼吸及其敏感,人类使用常规设备对其进行数据采集可能会对文物造成不可逆转的损害;鉴于上述原因,有必要提出了一种针对复杂地形考古工作的三维数据采集方法及装置。

发明内容

本发明的目的是针对现有考古现场三维数据采集记录的操作较为繁琐,数字记录效率较低等问题,以及针对人工无法或者不便进入的复杂地形,文物、遗址数据采集和数字记录工作难度较大的问题,提供一种针对复杂地形考古工作的三维数据采集方法及装置。

这种针对复杂地形考古工作的三维数据采集方法,包括以下步骤:

S1、将可移动的三维数据采集装置移动到考古人员不易或者不便到达进行勘察记录工作的复杂地面环境入口处,通过地面控制装置控制三维数据采集装置进入到考古现场中;

S2、通过三维数据采集装置的红外摄像装置对行进路径进行观察,控制三维数据采集装置移动至考古现场中适当位置;

S3、利用三维数据采集装置的三维激光扫描仪,结合LiDAR系统,采集考古现场的激光点云数据;

S4、三维数据采集装置将步骤S3中所得激光点云数据传输至地面控制端,按照特征点对其进行粗配准,将相邻站点云数据粗配准到一起;

S5、数据经过粗配准后,再采用ICP算法通过点对进行反复迭代精配准,然后输出同一基准配准后的点云数据;

S6、对步骤S5中输出的数据进行去噪处理,采用K-D树搜索最近领域点进行去躁,同时对难以区分的噪声点采用人机交互形式进行去噪;

S7、采用等密度法和包围网格法对步骤S6中所得数据进行精简处理;

S8、通过步骤S7中精简后的数据分析得出所勘探位置的点云特征,结合点云特征,采用多分辨率三维重建方法进行三维建模;

S9、重复步骤S1-S8,对其他考古现场中其他位置的三维数据进行采集;完成采集后,控制三维数据采集装置驶回出发点,结束三维数据采集工作。

作为优选:所述步骤S3中利用三维激光扫描仪所获取的点云数据坐标为独立坐标系,三维激光扫描仪所在位置的扫描中心为坐标原点,X坐标为横坐标,Y坐标在横向扫描面上且与X轴垂直,Z坐标在竖直方向上,其扫描点

其中,

作为优选:所述步骤S5中的ICP算法通过点对进行反复迭代配准,使得对应点对逐渐逼近,使得目标函数收敛;剔除错误点后,对源点云P中点集{P

作为优选:所述步骤S6中采用K-D树搜索最近领域点进行去噪,具体为:在K-D树中 搜索点P

通过查询记录的路径,如果点P

采用相同的方法找到P

如果平均距离超过设定的阈值

作为优选:所述步骤S7中的精简处理,其处理方法为:

首先建立一个子方格,并在子方格内计算P

然后求得d

这种针对复杂地形考古工作的三维数据采集方法中应用的三维数据采集装置,包括安装壳体、多功能环境检测装置、数据采集机构、行进驱动机构、辅助支撑机构和行进转向机构;所述安装壳体内部固定安装有LiDAR系统、动力电源、控制器以及信号传输装置;所述安装壳体上表面前端固定连接有多功能环境检测装置,所述多功能环境检测装置内部集成安装有空气质量检测模块,所述安装壳体上表面后部固定安装有数据采集机构;所述安装壳体的底面前端安装有行进驱动机构,所述安装壳体的底面后端安装有行进转向机构,所述行进转向机构的两侧安装有辅助支撑机构。

作为优选:所述数据采集机构包括电动伸缩杆、电动旋转杆和采集单元,所述电动伸缩杆底端固定连接在安装壳体上表面,所述电动伸缩杆的顶端固定连接有安装板,所述安装板上部固定安装有电动旋转杆,所述电动旋转杆的顶端固定有采集单元,所述采集单元包括高清红外摄像装置和三维激光扫描仪,所述采集单元的顶面上还固定连接有辅助照明灯。

作为优选:所述行进驱动机构和行进转向机构均包括固定架、转动轴、行进轮、支撑架、连接板、第一连接耳、第二连接耳和第一减震器;所述固定架中间位置转动连接有转动轴,所述转动轴上固定连接有行进轮;所述固定架上转动连接有支撑架,所述支撑架的顶端固定连接有连接板,所述支撑架顶端侧壁上固定连接有第一连接耳,所述固定架上固定连接有第二连接耳,所述第一连接耳和第二连接耳之间活动连接有第一减震器。

作为优选:所述行进驱动机构的两个固定架之间设置有双轴伺服电机,所述双轴伺服电机上固定连接有固定杆,所述固定杆远离双轴伺服电机一端固定连接在固定架侧壁上,所述双轴伺服电机的输出轴与固定架上的转动轴固定连接;所述行进转向机构的连接板上固定连接有转向柱,所述转向柱上端转动连接在安装壳体的底面,所述连接板上还固定连接有扇形延伸板,所述扇形延伸板上设置有弧形贯穿槽,所述弧形贯穿槽内壁上固定连接有齿块,所述行进转向机构还包括转向电机,所述转向电机上端固定连接在安装壳体的底面,所述转向电机的输出轴上固定连接有传动轴,所述传动轴底端固定连接有转向齿轮,所述转向齿轮与弧形贯穿槽内的齿块啮合连接。

作为优选:所述辅助支撑机构包括支撑弯杆和连接块,所述连接块固定连接在安装壳体的底面上,所述支撑弯杆顶端转动连接在连接块上,所述支撑弯杆的底端转动安装有辅助支撑轮,所述支撑弯杆上还设置第二减震器,所述第二减震器的两端分别转动连接在安装壳体底面和支撑弯杆上。

本发明的有益效果是:

1)本发明提出的针对复杂地形考古工作的三维数据采集方法,与小体积、机动性强的三维数据采集装置相匹配,能够更加方便的完成复杂地形的考古数据采集工作;且本方法中,通过三维激光扫描仪完成文物或遗址的点云数据采集工作,经由粗配准、细配准和去噪处理后,再采用等密度法和包围网格法对数据进行精简化,然后再采用多分辨率三维重建方法进行三维建模;通过上述方法,在保证三维数据采集和建模的精度的同时,大大简化了三维数据采集的操作流程,优化了数据处理方式,有效解决了现有考古现场三维数据采集记录的操作较为繁琐,数字记录效率较低的问题。

2)本发明提出的针对复杂地形考古工作的三维数据采集装置,在前端采用双轮式的行进驱动机构,在后端采用单轮式的行进转向机构,在保证机动性和通过性的同时,进一步提高了装置本体的灵活性,能够更好的保证其在复杂地形中行进;除此之外,本发明还在行进转向机构两侧安装了辅助支撑机构,更好的保证了装置本体的稳定性,同时行进驱动机构、行进转向机构和辅助支撑机构均进行了创新性的抗震设计,更好的保证了装置本体行进时的稳定性和抗震性;利用上述设计,有效解决了针对人工无法或者不便进入的复杂地形,文物、遗址数据采集和数字记录工作难度较大的问题。

附图说明

图1为针对复杂地形考古工作的三维数据采集装置的结构示意图;

图2为针对复杂地形考古工作的三维数据采集装置的爆炸结构示意图;

图3为针对复杂地形考古工作的三维数据采集装置的行进驱动机构的结构示意图;

图4为针对复杂地形考古工作的三维数据采集装置的行进转向机构的结构示意图;

图5为针对复杂地形考古工作的三维数据采集装置的辅助支撑机构的结构示意图;

图6为针对复杂地形考古工作的三维数据采集方法的示意图。

附图标记说明: 1、安装壳体;2、多功能环境检测装置;3、数据采集机构;301、电动伸缩杆;302、安装板;303、电动旋转杆;304、采集单元;305、辅助照明灯;4、行进驱动机构;401、固定架;402、转动轴;403、行进轮;404、支撑架;405、连接板;406、第一连接耳;407、第二连接耳;408、第一减震器;409、双轴伺服电机;410、固定杆;5、辅助支撑机构;501、支撑弯杆;502、连接块;503、辅助支撑轮;504、第二减震器;6、行进转向机构;601、转向柱;602、扇形延伸板;603、弧形贯穿槽;604、齿块;605、转向电机;606、传动轴;607、转向齿轮。

具体实施方式

下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

实施例一

本申请实施例一提供一种针对复杂地形考古工作的三维数据采集方法,包括以下步骤:

S1、将可移动的三维数据采集装置移动到考古人员不易或者不便到达进行勘察记录工作的复杂地面环境入口处,通过地面控制装置控制三维数据采集装置进入到考古现场中。其中地面控制装置是用于接收信息、控制三维数据采集装置工作所使用的固定终端或移动终端,可以是手机、遥控器或者笔记本电脑等终端设备。

S2、操作人员通过三维数据采集装置上安装的红外摄像装置对行进路径进行观察,控制三维数据采集装置移动至考古现场中适当位置。

S3、利用三维数据采集装置上的三维激光扫描仪,结合LiDAR系统,采集考古现场的激光点云数据。其中LiDAR是一种集激光、全球定位系统(GPS)和惯性导航系统(INS)三种技术于一身的系统,用于获得点云数据并生成精确的数字化三维模型,这三种技术的结合,可以在一致绝对测量点位的情况下获取周围的三维实景。

S4、三维数据采集装置将步骤S3中所得激光点云数据传输至地面控制端,按照特征点对其进行粗配准,将相邻站点云数据粗配准到一起。

S5、数据经过粗配准后,再采用ICP算法通过点对进行反复迭代精配准,然后输出同一基准配准后的点云数据,其中“基准”可以理解为“精确的基础标准”。

S6、对步骤S5中输出的数据进行去噪处理,根据噪声点的特点选择合适的去噪方式,可采用K-D树搜索最近领域点进行去躁,同时对难以区分的噪声点采用人机交互形式进行去噪。

S7、采用等密度法和包围网格法对步骤S6中所得数据进行精简处理。

S8、通过步骤S7中精简后的数据分析得出所勘探位置的点云特征,结合点云特征,采用多分辨率三维重建方法进行三维建模。

S9、重复步骤S1-S8,对其他考古现场中其他位置的三维数据进行采集;完成采集后,控制三维数据采集装置驶回出发点,结束三维数据采集工作。

实施例二

在实施例一的基础上,本申请实施例二提供一种更具体的针对复杂地形考古工作的三维数据采集方法,具体为:

所述步骤S3中利用三维激光扫描仪所获取的点云数据坐标为独立坐标系,三维激光扫描仪所在位置的扫描中心为坐标原点,X坐标为横坐标,Y坐标在横向扫描面上且与X轴垂直,Z坐标在竖直方向上,其扫描点

其中,

所述步骤S5中提到的ICP算法通过点对进行反复迭代配准,使得对应点对逐渐逼近,使得目标函数收敛;剔除错误点后,对源点云P中点集{P

所述步骤S6中采用K-D树搜索最近领域点进行去噪,具体为:在K-D树中搜索点P

通过查询记录的路径,如果点P

采用相同的方法可以找到最近点P

如果平均距离超过设定的阈值

所述步骤S7中的精简处理,其具体处理方法为:

首先建立一个子方格,并在子方格内计算P

然后可以求得d

本发明的针对复杂地形考古工作的三维数据采集方法,与小体积、机动性强的三维数据采集装置相匹配,能够更好的适应复杂地形条件下的考古工作,简化了三维数据采集流程,优化了数据的处理方式,能够更为高效、出色的完成文物、遗址的数据采集工作,更加方便的完成复杂地形的考古数据采集工作;且本方法中,通过三维激光扫描仪完成文物或遗址的点云数据采集工作,经由粗配准、细配准和去噪处理后,再采用等密度法和包围网格法对数据进行精简化,然后再采用多分辨率三维重建方法进行三维建模;通过上述方法,在保证三维数据采集和建模的精度的同时,大大简化了三维数据采集的操作流程,优化了数据处理方式,有效解决了现有考古现场三维数据采集记录的操作较为繁琐,数字记录效率较低的问题。

实施例三

本申请实施例三提供一种针对复杂地形考古工作的三维数据采集装置,包括安装壳体1、多功能环境检测装置2、数据采集机构3、行进驱动机构4、辅助支撑机构5和行进转向机构6;所述安装壳体1内部固定安装有LiDAR系统、动力电源、控制器以及信号传输装置;所述安装壳体1上表面前端固定连接有多功能环境检测装置2,所述多功能环境检测装置2内部集成安装有空气质量检测模块,能够对考古现场空气质量、温湿度、有害物质含量或氧气浓度等空气质量信息进行检测;所述安装壳体1上表面后部固定安装有数据采集机构3,实现装置本体的三维数据采集功能;所述安装壳体1的底面前端安装有行进驱动机构4,所述安装壳体1的底面后端安装有行进转向机构6,所述行进转向机构6的两侧安装有辅助支撑机构5。

实施例四

在实施例三的基础上,本申请实施例四提供一种更具体的针对复杂地形考古工作的三维数据采集装置,具体结构如下:

所述数据采集机构3包括电动伸缩杆301、电动旋转杆303和采集单元304,所述电动伸缩杆301底端固定连接在安装壳体1上表面,所述电动伸缩杆301的顶端固定连接有安装板302,所述安装板302上部固定安装有电动旋转杆303,所述电动旋转杆303的顶端固定有采集单元304,所述采集单元304包括高清红外摄像装置和三维激光扫描仪,所述采集单元304的顶面上还固定连接有辅助照明灯305。

所述行进驱动机构4和行进转向机构6均包括固定架401、转动轴402、行进轮403、支撑架404、连接板405、第一连接耳406、第二连接耳407和第一减震器408;所述固定架401中间位置转动连接有转动轴402,所述转动轴402上固定连接有行进轮403;所述固定架401上转动连接有支撑架404,所述支撑架404的顶端固定连接有连接板405,所述支撑架404顶端侧壁上固定连接有第一连接耳406,所述固定架401上固定连接有第二连接耳407,所述第一连接耳406和第二连接耳407之间活动连接有第一减震器408。

所述行进驱动机构4的两个固定架401之间设置有双轴伺服电机409,所述双轴伺服电机409上固定连接有固定杆410,所述固定杆410远离双轴伺服电机409一端固定连接在固定架401侧壁上,所述双轴伺服电机409的输出轴与固定架401上的转动轴402固定连接。

所述行进转向机构6的连接板405上固定连接有转向柱601,所述转向柱601上端转动连接在安装壳体1的底面,所述连接板405上还固定连接有扇形延伸板602,所述扇形延伸板602上设置有弧形贯穿槽603,所述弧形贯穿槽603内壁上固定连接有齿块604;所述行进转向机构6还包括转向电机605,所述转向电机605上端固定连接在安装壳体1的底面,所述转向电机605的输出轴上固定连接有传动轴606,所述传动轴606底端固定连接有转向齿轮607,所述转向齿轮607与弧形贯穿槽603内的齿块604啮合连接。

所述辅助支撑机构5包括支撑弯杆501和连接块502,所述连接块502固定连接在安装壳体1的底面上,所述支撑弯杆501顶端转动连接在连接块502上,所述支撑弯杆501的底端转动安装有辅助支撑轮503,所述支撑弯杆501上还设置第二减震器504,所述第二减震器504的两端分别转动连接在安装壳体1底面和支撑弯杆501上。

本发明的针对复杂地形考古工作的三维数据采集装置,在装置的顶面上安装有多功能环境检测装置2和数据采集机构3,其中多功能环境检测装置2能够对考古现场空气质量、温湿度、有害物质含量或氧气浓度等空气质量信息进行检测,而数据采集机构3主要用于实现装置本体的三维数据采集功能;本发明提出的三维数据采集装置,优化了装置的驱动和转向方式,更加便捷、灵活,也更有利于完成复杂地形下的数据采集和记录工作;在装置的底部安装有行进驱动机构4和行进转向机构6,行进驱动机构4和行进转向机构6均进行了创新性的抗震设计,行进驱动机构4和行进转向机构6的减震器通过第一连接耳406和第二连接耳407分别固定连接在支撑架404和固定架401上,转动轴402转动连接在固定架401的中心位置处,而支撑架404和第二连接耳407位于转动轴402的两侧,使用过程中,固定架401在水平方向上呈倾斜状态,且固定架401可以绕转动轴402进行一定程度的转动,相较于市面上常见的直接垂直或者倾斜安装减震器的方式,本发明提出的设计可以起到更好的减震效果,通过对于行驶过程中一些小的震动也可以起到更好的过滤效果,更进一步的保证装置本体在进行三维数据采集时的稳定性,除此之外,本发明的行进转向机构6设置在装置本体的后部,采用独立转向轮的设计,保证了装置本体行进时转向的灵活性,使用过程中,通过转向电机605和传动轴606带动齿轮转动,齿轮与扇形延伸板602上的齿块604啮合连接,进而可以带动行进转向机构6进行转向工作;采用上述设计,在保证机动性和通过性的同时,进一步提高了装置本体的灵活性,能够更好的保证其在复杂地形中行进;更进一步的,本发明还在行进转向机构6两侧安装了辅助支撑机构5,更好的保证了装置本体的稳定性,同时行进驱动机构4、行进转向机构6和辅助支撑机构5均进行了创新性的抗震设计,更好的保证了装置本体行进时的稳定性和抗震性;综上所述,利用上述设计,有效解决了针对人工无法或者不便进入的复杂地形,文物、遗址数据采集和数字记录工作难度较大的问题。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号