首页> 中国专利> 一种可选择性定量检测4-硝基苯胺的荧光探针及其制备方法和应用

一种可选择性定量检测4-硝基苯胺的荧光探针及其制备方法和应用

摘要

本发明公开了一种选择性定量检测4‑硝基苯胺的荧光探针及其制备方法和应用,该荧光探针是由一种阴离子共轭聚合物与泊洛沙姆通过自组装方法形成的纳米胶束,具有增强共轭聚合物荧光量子产率及水溶性的功能。该荧光探针对4‑硝基苯胺浓度具有特异性的明显增强的颜色响应,可在复杂环境中排除其他生物分子干扰,实现选择性定量检测4‑硝基苯胺;除此之外,该荧光探针能够通过简单的方法将液态的荧光探针制成便携式的纸片传感器,实现对4‑硝基苯胺的快速,现场实时检测。

著录项

  • 公开/公告号CN114957708A

    专利类型发明专利

  • 公开/公告日2022-08-30

    原文格式PDF

  • 申请/专利权人 西安交通大学;

    申请/专利号CN202210800811.4

  • 申请日2022-07-08

  • 分类号C08J3/00(2006.01);C08L65/00(2006.01);C08L71/02(2006.01);C08G61/12(2006.01);C09K11/06(2006.01);G01N21/64(2006.01);G01N21/78(2006.01);

  • 代理机构西安通大专利代理有限责任公司 61200;

  • 代理人范巍

  • 地址 710049 陕西省西安市咸宁西路28号

  • 入库时间 2023-06-19 16:34:57

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-16

    实质审查的生效 IPC(主分类):C08J 3/00 专利申请号:2022108008114 申请日:20220708

    实质审查的生效

说明书

技术领域

本发明属于荧光探针技术领域,涉及一种选择性定量检测4-硝基苯胺的荧光探针及其制备方法和应用。

背景技术

随着工业的发展和人口的增加,有机废水和其他化学废物的排放量急剧增加,成为人们关心的环境和健康问题之一。4-硝基苯胺(4-NA)是许多化工产品的重要前体之一,主要用于合成杀虫剂、偶氮染料、医药、光稳定剂、抗氧化剂等。4-硝基苯胺降解速度缓慢,导致它们在环境中长期存在,对水质,土壤肥力,野生动植物等造成不利影响。4-硝基苯胺具有剧毒性,可引起比苯胺更剧烈的血液中毒,即使是微量的4-硝基苯胺对人体造成的伤害也是不容忽视的,可引起呼吸骤停、腹泻、皮肤湿疹和贫血等健康问题。因此,对4-硝基苯胺进行高效、准确的检测对国家安全、军事应用、医学研究以及环境保护等具有重要意义。

对4-硝基苯胺的传统检测方法主要有比色法、高效液相色谱(HPLC)法和电化学方法。高效液相色谱法测定准确度高,但相对耗时较长。电化学方法检测灵敏度高、速度快,但操作相对复杂。这些方法由于存在设备投入大、耗时长、样品预处理复杂等缺点很难实现实时检测。基于优异光学性能的荧光检测方法因其检测限低、灵敏度高、便携等优点,在快速检测领域具有光明的应用前景。目前报道的用于4-硝基苯胺的荧光检测方法主要基于荧光染料及量子点,这些材料带来的毒性以及染料泄露等问题不容忽视。共轭聚合物(CPs)是一类新型的荧光有机材料,结合了聚合物和半导体物质的特性。共轭聚合物由于具有高光致发光量子产率(PLQY),良好的光稳定性和优异的灵敏度等多种特性被广泛用于荧光传感领域。然而大多数共轭聚合物是疏水性的,其有限的水溶性严重限制了它们在传感方面的应用。通过纳米胶束化共轭聚合物,不仅提高了其水溶性,而且极大的提高了其荧光量子产率,因此被认为是一种具有操作简单性和高适用性的检测策略。

目前,未发现有利用共轭聚合物纳米胶束检测4-硝基苯胺的报道,因此,设计一种能够有效排除其他分析物的干扰,实现对4-硝基苯胺的快速、灵敏、高效检测的荧光探针,对于生态环境的保护以及保护人类健康是十分必要的。

发明内容

为了克服上述现有技术的缺点,本发明的目的在于提供一种选择性定量检测4-硝基苯胺的荧光探针及其制备方法和应用,能够在复杂环境中选择性识别 4-硝基苯胺,灵敏度高、检测限低,选择性好、操作方便快捷,同时该探针可以制备成便携的纸片式传感器,更适合现场检测。

为了达到上述目的,本发明采用以下技术方案予以实现:

本发明公开了一种选择性定量检测4-硝基苯胺的荧光探针,该荧光探针是由一种阴离子共轭聚合物与泊洛沙姆通过自组装方法形成的纳米胶束;其中,所述阴离子共轭聚合物的结构式如下:

本发明还公开了上述的选择性定量检测4-硝基苯胺的荧光探针在制备选择性定量检测4-硝基苯胺的传感器中的应用。

优选地,所述的传感器为便携式纸片传感器。

本发明还公开了上述的选择性定量检测4-硝基苯胺的荧光探针的制备方法,将阴离子共轭聚合物PF-DBT-COONa与泊洛沙姆F127混合后自组装,得到可选择性定量检测4-硝基苯胺的荧光探针PF-Plu-Mic;其中:

阴离子共轭聚合物PF-DBT-COONa与泊洛沙姆的摩尔比为(5~50):(0.1~1)。

优选地,所述阴离子共轭聚合物PF-DBT-COONa按照以下方法合成得到,包括以下步骤:

1)将二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯、2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴、4,7-双(2-溴-5-噻吩基)- 2,1,3-苯并噻二唑混合后,加入四氢呋喃溶液,得到溶液A;

2)将碳酸钾与超纯水混合,加入至溶液A中,脱气处理,然后加入四(三苯基膦)钯作为催化剂,通入氮气,然后加热回流,进行聚合反应,聚合反应结束后,分离纯化,得到前体聚合物PF-DBT-COOtBut;

3)将前体聚合物PF-DBT-COOtBut溶于二氯甲烷中,脱气处理,然后加入三氟乙酸,在室温下反应24h,加入碳酸钠溶液继续反应6~24h,反应结束后分离纯化,得到阴离子共轭聚合物PF-DBT-COONa。

进一步优选地,步骤1)中,二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯、2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴、 4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑和四氢呋喃的用量比为(0.1~0.5)g: (0.2~1)g:(0.05~0.5)g:(15~100)mL;

步骤2)中,碳酸钾与超纯水用量比为(0.5~2.5)g:(2~10)mL;加入四(三苯基膦)钯催化剂与碳酸钾的质量比为1:10;

步骤3)中,前体聚合物PF-DBT-COOtBut、三氟乙酸和二氯甲烷的的用量比为(10~100)mg:(0.5~5)mL:(5~45)mL,同时加入的碳酸钠与前体聚合物的质量比为1000:1。

进一步优选地,步骤2)和步骤3)中,脱气处理时间为20~40min,通入氮气的时间为30~40min。

进一步优选地,步骤2)中,加热回流的温度为40~100℃,聚合反应时间为12~96h。

进一步优选地,步骤2)中,分离纯化操作为:反应结束后,过滤除去固体杂质,除去溶剂,加入水和三氯甲烷进行萃取,取有机相,用无水硫酸钠干燥、过滤,除去有机溶剂,在甲醇溶液中反复进行沉淀,得到前体聚合物PF-DBT- COOtBut。

进一步优选地,步骤3)中,分离纯化操作为:反应结束后,除去二氯甲烷,然后将剩余溶液转移至分子量为2kDa的透析袋中透析48h,旋转蒸发及真空干燥除去残余液体,制得阴离子共轭聚合物PF-DBT-COONa。

与现有技术相比,本发明具有以下有益效果:

本发明公开的选择性定量检测4-硝基苯胺的荧光探针,是将一种新型结构的阴离子共轭聚合物与泊洛沙姆自组装形成的纳米胶束,该阴离子共轭聚合物中左侧链的聚合度选择80,右侧链的聚合度选择20,该比例下的共轭聚合物 (PF-DBT-COONa)含有聚芴荧光团(415nm)和DBT荧光团(635nm),能发出明亮的蓝色,与F127自组装成可选择性定量检测4-硝基苯胺的纳米胶束荧光探针PF-Plu-Mic,与单一的聚合物探针相比,其水溶性、荧光量子产率以及对4-硝基苯胺的检测灵敏度均得到了很大的提升。

本发明公开的上述选择性定量检测4-硝基苯胺的荧光探针制备方法,操作非常简单,只需将其与泊洛沙姆F127混合后自组装便可获得可选择性定量检测4-硝基苯胺的荧光探针PF-Plu-Mic,泊洛沙姆不仅可以有效提高共轭聚合物在水中的溶解性,还能够通过调节浓度将液体的探针转变为便携式的凝胶固体装备,从而实现便携、现场检测。

本发明制备得到的荧光探针整体呈现明亮的蓝色发射,对4-硝基苯胺具有优异的选择性,随着4-硝基苯胺浓度的增加,探针被淬灭,使其荧光强度显著下降,明亮的蓝色荧光逐渐褪去,且能够在复杂环境中选择性识别4-硝基苯胺,灵敏度高、检测限低,选择性好、操作方便快捷。同时该探针可以制备成便携的纸片式传感器,更适合现场检测。

附图说明

图1为本发明可选择性定量检测4-硝基苯胺的荧光探针PF-DBT-COONa的合成路线图;

图2为本发明实施例1中可选择性定量检测4-硝基苯胺的荧光探针PF- DBT-COONa的核磁共振氢谱图;

图3为本发明实施例7中,PF-Plu-Mic对不同浓度的4-硝基苯胺的荧光响应光谱图;

图4为本发明实施例7中,纸片式的PF-Plu-Mic传感器对不同浓度的4- 硝基苯胺的响应图;其中,a为试纸浸入4-NA(1mM)溶液后在紫外灯下的颜色。b为加入各种浓度的4-NA溶液后试纸的颜色变化;

图5为本发明实施例8中PF-Plu-Mic对4-硝基苯胺的选择性测试柱状图,即PF-Plu-Mic响应与各种潜在的干扰物之间的关系图。

具体实施方式

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

下面结合附图对本发明做进一步详细描述:

参见图1,为本发明合成阴离子共轭聚合物PF-DBT-COONa的路线图,包括以下步骤:

1)将二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯、2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴、4,7-双(2-溴-5-噻吩基)- 2,1,3-苯并噻二唑混合后,加入四氢呋喃溶液,得到溶液A;

2)将碳酸钾与超纯水混合,加入至溶液A中,脱气处理,然后加入四(三苯基膦)钯作为催化剂,通入氮气,然后加热回流,进行聚合反应,聚合反应结束后,分离纯化,得到前体聚合物PF-DBT-COOtBut;

3)将前体聚合物PF-DBT-COOtBut溶于二氯甲烷中,脱气处理,然后加入三氟乙酸,在室温下反应24h,加入碳酸钠溶液继续反应6~24h,反应结束后分离纯化,得到阴离子共轭聚合物PF-DBT-COONa。

实施例1

取0.1g的二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯(M1)、0.2g的 2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴(M2)、 0.05g的4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(M3)于三口瓶中,加入15 mL四氢呋喃溶液,得到溶液A。将0.5g碳酸钾与2mL超纯水混合,用注射器加入溶液A中,脱气30min,加入0.005g四(三苯基膦)钯做催化剂,通入氮气30min,40℃加热回流12h,进行聚合反应。聚合反应结束后,过滤除去固体杂质,用旋转蒸发仪除去溶剂,加入水和三氯甲烷萃取,取有机相,用无水硫酸钠干燥,过滤;旋转蒸发除去有机溶剂,在甲醇溶液中反复进行沉淀得到前体聚合物PF-DBT-COOtBut。将10mg的PF-DBT-COOtBut、0.5mL的三氟乙酸和5mL二氯甲烷混合后,室温下反应12h。反应结束后旋转蒸发除去二氯甲烷,加入25ml 0.2M的碳酸钠溶液在室温下反应6h,反应结束后将溶液转移至分子量为2kDa的透析袋中透析2天;旋转蒸发以及真空干燥除去溶剂后,得到阴离子共轭聚合物PF-DBT-COONa。

通过核磁共振氢谱对PF-DBT-COONa进行表征,结果如图2所示。从图2 的测试结果可归属质子特征峰:

将5μM的PF-DBT-COONa与0.1μM的泊洛沙姆(F127)通过自组装方法形成纳米胶束,得到可选择性定量检测4-硝基苯胺的比率型荧光探针PF-Plu- Mic。

实施例2

取0.15g的二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯(M1)、0.3g 的2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴(M2)、 0.08g的4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(M3)于三口瓶中,加入25 mL四氢呋喃溶液,得到溶液A。将1.382g碳酸钾与3mL超纯水混合,用注射器加入溶液A中,脱气30min,加入0.015g四(三苯基膦)钯做催化剂,通入氮气30min,70℃加热回流48h,进行聚合反应。聚合反应结束后,过滤除去固体杂质,用旋转蒸发仪除去溶剂,加入水和三氯甲烷萃取,取有机相,用无水硫酸钠干燥,过滤;旋转蒸发除去有机溶剂,在甲醇溶液中反复进行沉淀得到前体聚合物PF-DBT-COOtBut。将50mg的PF-DBT-COOtBut、3mL的三氟乙酸和30mL二氯甲烷混合后,室温下反应12h。反应结束后旋转蒸发除去二氯甲烷,加入25ml 0.2M的碳酸钠溶液在室温下反应24h,反应结束后将溶液转移至分子量为2kDa的透析袋中透析2天;旋转蒸发以及真空干燥除去溶剂后,得到阴离子共轭聚合物PF-DBT-COONa。本实施例所得的荧光化合物的表征与实施例1中的表征结果是相同的。

将9μM的PF-DBT-COONa与0.2μM的泊洛沙姆(F127)通过自组装方法形成纳米胶束,得到可选择性定量检测4-硝基苯胺的比率型荧光探针PF-Plu- Mic。

实施例3

取0.5g的二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯(M1)、0.3g的 2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴(M2)、 0.1g的4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(M3)于三口瓶中,加入60mL 四氢呋喃溶液,得到溶液A。将2g碳酸钾与10mL超纯水混合,用注射器加入溶液A中,脱气30min,加入0.005g四(三苯基膦)钯做催化剂,通入氮气 30min,50℃加热回流48h,进行聚合反应。聚合反应结束后,过滤除去固体杂质,用旋转蒸发仪除去溶剂,加入水和三氯甲烷萃取,取有机相,用无水硫酸钠干燥,过滤;旋转蒸发除去有机溶剂,在甲醇溶液中反复进行沉淀得到前体聚合物PF-DBT-COOtBut。将40mg的PF-DBT-COOtBut、2mL的三氟乙酸和35mL二氯甲烷混合后,室温下反应12h。反应结束后旋转蒸发除去二氯甲烷,加入25ml 0.2M的碳酸钠溶液在室温下反应12h,反应结束后将溶液转移至分子量为2kDa的透析袋中透析2天;旋转蒸发以及真空干燥除去溶剂后,得到阴离子共轭聚合物PF-DBT-COONa。本实施例所得的荧光化合物的表征与实施例1中的表征结果是相同的。

将5μM的PF-DBT-COONa与1μM的泊洛沙姆(F127)通过自组装方法形成纳米胶束,得到可选择性定量检测4-硝基苯胺的比率型荧光探针PF-Plu- Mic。

实施例4

取0.32g的二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯(M1)、0.5g 的2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴(M2)、 0.3g的4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(M3)于三口瓶中,加入100 mL四氢呋喃溶液,得到溶液A。将2.5g碳酸钾与10mL超纯水混合,用注射器加入溶液A中,脱气30min,加入0.03g四(三苯基膦)钯做催化剂,通入氮气30min,80℃加热回流12h,进行聚合反应。聚合反应结束后,过滤除去固体杂质,用旋转蒸发仪除去溶剂,加入水和三氯甲烷萃取,取有机相,用无水硫酸钠干燥,过滤;旋转蒸发除去有机溶剂,在甲醇溶液中反复进行沉淀得到前体聚合物PF-DBT-COOtBut。将100mg的PF-DBT-COOtBut、5mL的三氟乙酸和45mL二氯甲烷混合后,室温下反应12h。反应结束后旋转蒸发除去二氯甲烷,加入25ml 0.2M的碳酸钠溶液在室温下反应24h,反应结束后将溶液转移至分子量为2kDa的透析袋中透析2天;旋转蒸发以及真空干燥除去溶剂后,得到阴离子共轭聚合物PF-DBT-COONa。本实施例所得的荧光化合物的表征与实施例1中的表征结果是相同的。

将25μM的PF-DBT-COONa与0.1μM的泊洛沙姆(F127)通过自组装方法形成纳米胶束,得到可选择性定量检测4-硝基苯胺的比率型荧光探针PF-Plu- Mic。

实施例5

取0.48g的二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯(M1)、0.35g 的2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴(M2)、 0.05g的4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(M3)于三口瓶中,加入65 mL四氢呋喃溶液,得到溶液A。将1.5g碳酸钾与8mL超纯水混合,用注射器加入溶液A中,脱气30min,加入0.009g四(三苯基膦)钯做催化剂,通入氮气30min,50℃加热回流96h,进行聚合反应。聚合反应结束后,过滤除去固体杂质,用旋转蒸发仪除去溶剂,加入水和三氯甲烷萃取,取有机相,用无水硫酸钠干燥,过滤;旋转蒸发除去有机溶剂,在甲醇溶液中反复进行沉淀得到前体聚合物PF-DBT-COOtBut。将50mg的PF-DBT-COOtBut、4mL的三氟乙酸和5mL二氯甲烷混合后,室温下反应12h。反应结束后旋转蒸发除去二氯甲烷,加入25ml 0.2M的碳酸钠溶液在室温下反应6h,反应结束后将溶液转移至分子量为2kDa的透析袋中透析2天;旋转蒸发以及真空干燥除去溶剂后,得到阴离子共轭聚合物PF-DBT-COONa。本实施例所得的荧光化合物的表征与实施例1中的表征结果是相同的。

将25μM的PF-DBT-COONa与0.3μM的泊洛沙姆(F127)通过自组装方法形成纳米胶束,得到可选择性定量检测4-硝基苯胺的比率型荧光探针PF-Plu- Mic。

实施例6

取0.1g的二-叔-丁基3,3-(2,7-二溴-9H-芴-9,9-叉基)二丙酯(M1)、0.8g的 2,7-二(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)-9,9-二(3-丙酸正丁酯)芴(M2)、 0.45g的4,7-双(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(M3)于三口瓶中,加入30 mL四氢呋喃溶液,得到溶液A。将0.8g碳酸钾与8mL超纯水混合,用注射器加入溶液A中,脱气30min,加入0.01g四(三苯基膦)钯做催化剂,通入氮气30min,68℃加热回流36h,进行聚合反应。聚合反应结束后,过滤除去固体杂质,用旋转蒸发仪除去溶剂,加入水和三氯甲烷萃取,取有机相,用无水硫酸钠干燥,过滤;旋转蒸发除去有机溶剂,在甲醇溶液中反复进行沉淀得到前体聚合物PF-DBT-COOtBut。将25mg的PF-DBT-COOtBut、4.5mL的三氟乙酸和40mL二氯甲烷混合后,室温下反应12h。反应结束后旋转蒸发除去二氯甲烷,加入25ml 0.2M的碳酸钠溶液在室温下反应20h,反应结束后将溶液转移至分子量为2kDa的透析袋中透析2天;旋转蒸发以及真空干燥除去溶剂后,得到阴离子共轭聚合物PF-DBT-COONa。本实施例所得的荧光化合物的表征与实施例1中的表征结果是相同的。

将40μM的PF-DBT-COONa与0.5μM的泊洛沙姆(F127)通过自组装方法形成纳米胶束,得到可选择性定量检测4-硝基苯胺的比率型荧光探针PF-Plu- Mic。

对4-硝基苯胺的荧光检测性能试验:

1、对不同浓度4-硝基苯胺的荧光检测

采用本发明制备的PF-Plu-Mic荧光探针(以实施例2为例)对不同浓度4-硝基苯胺的荧光检测。测试时,PF-Plu-Mic始终保持在30μM,4-硝基苯胺的浓度为0μM、10μM、20μM、30μM、40μM、50μM、60μM、70μM、80μM。测试体系总量为1mL,测试温度为25℃,激发波长为370nm,测得的荧光光谱图如图3所示,随着4-硝基苯胺浓度的增加,413nm处的荧光强度逐渐下降。由图3可知,该荧光强度比值与4-硝基苯胺浓度之间呈现良好的线性关系。图4为将PF-Plu-Mic制成便携式纸片传感器时,对4-硝基苯胺的荧光响应图。图4证明了PF-Plu-Mic具备灵敏、快速及实时检测4-硝基苯胺的能力。

2、对不同潜在干扰物存在时对4-硝基苯胺的选择性测试采用本发明制备的PF-Plu-Mic荧光探针(以实施例2为例)对不同潜在干扰物存在时对4-硝基苯胺的选择性测试。用浓度为30μM的PF-Plu-Mic荧光探针对存在潜在干扰物的复杂体系进行荧光检测。测试体系,4-硝基苯胺(4-NA),2,6-二氯-4-硝基苯胺(DCNA),甲苯(Toluene),三乙胺(TEA),硝基苯(NB),苯胺(AN), 4-硝基甲苯(4-NT),3-硝基苯胺(3-NA),苯甲酸(BA),三甲胺(TMA), 3,3',5,5'-四甲基联苯(TMB)和四甲基乙二胺(TMEDA)。每个分析物的浓度均为0.8mM,测试体系总量为1mL,测试温度为25℃,激发波长为370 nm,测得的荧光光谱图如图5所示,由图5可以看出本发明的荧光探针对4-硝基苯胺有优异的选择性。

综上所述,本发明公开的选择性定量检测4-硝基苯胺的荧光探针是一种新型阴离子共轭聚合物与泊洛沙姆自组装形成的纳米胶束,具有增强共轭聚合物荧光量子产率及水溶性的功能。本发明的荧光探针对4-硝基苯胺浓度具有特异性的明显增强的颜色响应,可在复杂环境中排除其他生物分子干扰,实现选择性定量检测4-硝基苯胺;除此之外,该荧光探针能够通过简单的方法将液态的荧光探针制成便携式的纸片传感器,实现对4-硝基苯胺的快速,现场实时检测。

以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号