首页> 外文会议>11th fuel cell science, engineering, and technology conference 2013 >3D MODELING OF AN ANODE SUPPORTED SOFC USING FEM AND LBM
【24h】

3D MODELING OF AN ANODE SUPPORTED SOFC USING FEM AND LBM

机译:使用FEM和LBM对阳极支撑的SOFC进行3D建模

获取原文
获取原文并翻译 | 示例

摘要

Solid oxide fuel cells (SOFCs) are promising as energy producing device, which at this stage of its development will require extensive analysis and benefit from numerical modeling at different time- and length scales. In this study, two models based on finite element method (FEM) and Lattice Boltzmann model (LBM), respectively, are evaluated and compared for an anode-supported SOFC. First, a 3D model is developed based on the FEM, using COMSOL, of a single SOFC operating at an intermediate temperature range. Heat, gas-phase species, momentum, ion and electron transport are implemented and coupled to the kinetics of the electrochemical reactions. Secondly, a 3D model of the porous anode of a SOFC is developed using LBM to investigate the effects of electrochemical reactions on the transport processes at microscale for 3 components (H_2, H_2O and O~(2-)). Parallel computing in Python is employed through the program Palabos to capture the active microscopic catalytic reaction effects on the heat and mass transport. It is found that LBM can be effectively used at a mesoscale ranging down to a microscale and proven to effectively take care of the interaction between the fluid particles and the walls of the porous media. The 3D LBM model takes into account the transport of oxygen ions within the solid particles of the SOFC anode. Both the oxygen ions and the hydrogen are mainly consumed by the reaction layer. One of the improvements in this study compared to our previous (FEM) models is the captured 3D effects which was not possible in 2D. High current density spots are identified, where the electron transport distance is short and the oxygen concentration is high. The relatively thin cathode results in a significant oxygen mole fraction gradient in the direction normal to the main flow direction.
机译:固体氧化物燃料电池(SOFC)有望作为能量产生装置,在其发展的这一阶段将需要进行广泛的分析,并受益于不同时间和长度范围内的数值建模。在这项研究中,分别评估和比较了两种基于有限元方法(FEM)和莱迪思玻尔兹曼模型(LBM)的阳极支撑SOFC模型。首先,使用COMSOL基于FEM开发了在中间温度范围内运行的单个SOFC的3D模型。实施热量,气相物质,动量,离子和电子传输,并将其与电化学反应的动力学联系起来。其次,利用LBM建立了SOFC多孔阳极的3D模型,以研究电化学反应对H_2,H_2O和O〜(2-)三种组分在微观尺度上的迁移过程的影响。通过程序Palabos使用Python中的并行计算来捕获对热量和质量传递的有效微观催化反应影响。已经发现,LBM可以有效地用于低至微米级的中观规模,并且被证明有效地照顾了流体颗粒与多孔介质壁之间的相互作用。 3D LBM模型考虑了SOFC阳极固体颗粒内氧离子的传输。氧离子和氢都主要被反应层消耗。与我们以前的(FEM)模型相比,此研究的一项改进是捕获了3D效果,这在2D中是不可能的。识别出高电流密度点,其中电子传输距离短且氧浓度高。相对较薄的阴极导致在垂直于主流方向的方向上明显的氧气摩尔分数梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号