【24h】

Multi-Objective Optimization of Helicopter Rotor Vibration Reduction by Modal Shaping

机译:模态整形减少直升机旋翼减振的多目标优化

获取原文
获取原文并翻译 | 示例

摘要

This chapter derives the aeroelastic and modal shaping finite element dynamics model from Hamilton theory. It analyzes the systemic structural dynamics by changing the stiffness and mass of the blade section. The stiffness and mass of blade section are used as design variables, constrains on frequency placement, autorotational inertia and modal shaping parameters are included, the multi-objective functions are to minimize the blade vibration and blade mass. The method of optimization is Adaptive Simulated Annealing. Finally, compared with the optimization result of the designed model, the result shows that the optimum solution results in a 32.2% reduction of the 3/rev rotor blade root shear, 51.6% reduction of the 4/rev rotor blade root shear, 41.5% reduction of the 5/rev rotor blade root shear and 6.01% blade mass reduction under the control of the constrained conditions.
机译:本章从汉密尔顿理论推导了气动弹性模态成形有限元动力学模型。它通过更改叶片部分的刚度和质量来分析系统的结构动力学。叶片截面的刚度和质量用作设计变量,包括频率布置,自动旋转惯性和模态成形参数的约束,其多目标功能是使叶片振动和叶片质量最小化。优化的方法是自适应模拟退火。最后,与设计模型的优化结果进行比较,结果表明,最佳解决方案可使3 / rev转子叶片根部剪切力降低32.2%,使4 / rev转子叶片根部剪切力降低51.6%,41.5%在受限条件下,可减少5 /转转子叶片根部剪切力并减少6.01%的叶片质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号