首页> 外文会议>6th Hybrid and Electric Vehicles Conference >Thermal management strategies for integrated hybrid vehicle subsystems
【24h】

Thermal management strategies for integrated hybrid vehicle subsystems

机译:集成混合动力汽车子系统的热管理策略

获取原文
获取原文并翻译 | 示例

摘要

Intelligent thermal management is a key area of interest for delivering ever more efficient vehicles. The ability to redistribute and reroute thermal energy around the vehicle, it's subsystems and environment enables for example, quicker component conditioning to optimal operating conditions. This in turn can yield reduction in on-board energy source utilisation for things other than vehicle propulsion. On BEVs (Battery Electric Vehicles) a particular area of interest is the thermal management of the battery and cabin, without requiring significant use of power from the battery itself. The interest in this area is to minimise the impact of subsystem conditioning on vehicle range. Heat pumps are becoming more popular for transferring thermal energy throughout vehicle systems. Heat pump systems vary from simple ones which take heat out of the outside air, transferring it to vehicle subsystems which require heating up. Conversely the same heat pump system could be used for chilling the cabin air or other vehicle components that require cooling. The coupling of vehicle subsystems to the heat pump heat exchangers requires careful design and evaluation of fluids routing throughout the vehicle. Conventional vehicle architectures may require substantial re-engineering to accommodate the heat pump fluid circuitry layout, particularly for heat pump systems which interact with multiple vehicle subsystems. This paper applies systems engineering to the evaluation and selection of an integrated heat pump for BEV applications capable of transferring heat between several vehicle subsystems. Benefits of several control scenarios are evaluated to narrow down the feasible solutions prior to hardware development and demonstrator assembly. The scenarios cover both warm-up and pull-down situations with a particular focus on warm-up (predicted to be the worst case for BEV range reduction). The work identifies ways to minimise the use of PTC (Positive Thermal Coefficient) devices where electrical energy is used to heat up a fluid (cabin ventilation air, for example), such energy typically being drawn from the traction battery. Benefits of the investigated heat pump configurations are given in terms of reduced heating power drawn from the traction battery but also improvement on vehicle range as a result of optimised thermal energy transfer across the vehicle systems.
机译:智能热管理是交付效率更高的车辆的重要关注领域。在车辆,其子系统和环境周围重新分配和重新分配热能的能力,例如,可以更快地将零件调理到最佳运行条件。反过来,这可以减少车载动力以外的车载能源的利用率。在BEV(电池电动车)上,一个特别感兴趣的领域是电池和车厢的热管理,而无需大量使用电池本身的电力。该领域的兴趣在于最大程度地减少子系统调节对车辆行驶里程的影响。在整个车辆系统中传递热能的热泵正变得越来越流行。热泵系统与简单的系统不同,简单的系统从外部空气中吸收热量,然后将其传递到需要加热的车辆子系统。相反,相同的热泵系统可用于冷却车厢空气或其他需要冷却的车辆部件。车辆子系统与热泵热交换器的耦合需要仔细设计和评估整个车辆中的流体路径。常规的车辆架构可能需要大量的重新设计以适应热泵流体回路的布局,特别是对于与多个车辆子系统相互作用的热泵系统。本文将系统工程学应用于BEV应用的集成热泵的评估和选择,该集成热泵能够在多个车辆子系统之间传递热量。在硬件开发和演示器组装之前,评估了几种控制方案的好处,以缩小可行的解决方案的范围。这些场景涵盖了预热和下拉两种情况,并且特别着重于预热(预计这是降低BEV范围的最坏情况)。这项工作确定了减少使用PTC(正热系数)设备的方式的方法,在这些设备中,电能用于加热流体(例如,机舱通风空气),这种能量通常从牵引电池中获取。所研究的热泵配置的优势不仅体现在减少从牵引电池汲取的热能方面,而且还因为跨整个车辆系统进行了优化的热能传递,从而改善了车辆行驶里程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号