首页> 外文会议>Colloidal quantum dots for biomedical applications V >Whispering-Gallery Mode Based Biosensing Using Quantum Dot-Embedded Microspheres
【24h】

Whispering-Gallery Mode Based Biosensing Using Quantum Dot-Embedded Microspheres

机译:基于耳语画廊模式的量子点嵌入式微球生物传感。

获取原文
获取原文并翻译 | 示例

摘要

Highly sensitive, miniature biosensors are desired for the development of new techniques for biological and environmental analyte sensing. One potential approach uses the detection of optical resonances, known as Whispering Gallery Modes (WGMs), from quantum dot embedded polystyrene microspheres. These modes arise from the total internal reflection of the quantum dot emission light within the high index polystyrene microsphere, to produce narrow spectral peaks, which are sensitive to refractive changes in the immediate vicinity of the microsphere surface. The high refractometric sensitivity of the WGMs in these microspheres offers potential for remote detection of molecules adsorbed onto or bound to the microsphere surface without the need for direct coupling of the light via an optical fiber. The sensitivity of these modes has been shown to exceed the theoretical sensitivity of a homogeneous microsphere, using a Mie theory model. This enhancement is believed to be due to the embedded layer of quantum dots at the surface of the microspheres. A model was developed to demonstrate that the embedded QDs could be modeled as a high index outer layer to explain the observed WGM spectra and explore the sensitivity of the modes. In this work, we extend this idea to multiple layers to model the effects of protein adsorption or binding to the surface. The theoretical results are shown to provide a close fit to our previous experimental results.
机译:对于开发用于生物和环境分析物感测的新技术,需要高度灵敏的微型生物传感器。一种潜在的方法是从嵌入量子点的聚苯乙烯微球中检测被称为耳语画廊模式(WGM)的光学共振。这些模式来自高折射率聚苯乙烯微球内量子点发射光的全内反射,从而产生狭窄的光谱峰,该光谱峰对微球表面附近的折射变化敏感。这些微球中WGM的高折光敏感性为远程检测吸附在或结合到微球表面上的分子提供了潜力,而无需通过光纤直接耦合光。使用Mie理论模型,这些模式的灵敏度已显示超过同质微球体的理论灵敏度。据信这种增强是由于微球表面上量子点的嵌入层。开发了一个模型来证明嵌入式QD可以建模为高折射率外层,以解释观察到的WGM光谱并探索模式的敏感性。在这项工作中,我们将这一想法扩展到多个层次,以模拟蛋白质吸附或结合到表面的效果。理论结果显示与我们之前的实验结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号