【24h】

QUANTUM-DOT LIGHT EMITTING DEVICES AND DISPLAYS

机译:量子点发光器件和显示

获取原文
获取原文并翻译 | 示例

摘要

The luminescence of inorganic core-shell semiconductor nanocrystal quantum dots (QDs) can be tuned through the visible and near infrared spectral range by changing the size and material of the QDs while preserving a narrowband, gaussian emission spectrum and photoluminescence efficiency of 25%. Organic capping groups, surrounding the QD lumophores, facilitate processing in organic solvents and their incorporation into organic thin film light emitting device (LED) structures. Recent reports have shown that hybrid organic/inorganic QD-LEDs can be fabricated with high brightness and small spectral FWHM, utilizing a phase segregation process which self-assembles QDs onto an organic thin film surface [Coe et al., Nature 420, 800 (2002)]. The phase segregation process can be generally applied to the fabrication of QD-LEDs containing a wide range of particle sizes and materials. QD-LEDs emitting from 540 nm to 1,550 nm have been demonstrated to date, with external quantum efficiencies of thin film light emitters. Organic light emitting devices (OLEDs) have been identified as a dominant new technology poised to realize the next generation of flat panel displays. OLED performance is exemplified by wide viewing angles, high color contrast, and low power consumption as compared to emissive liquid crystal displays. Indeed, internal quantum efficiencies can approach 100% when organic phosphorescent molecules are used as the emitting materials. A significant challenge of today's OLED technology remains the identification and synthesis of organic lumophores compatible with electrically pumped device structures. Only a handful of efficient and long-lived organic phosphors have been incorporated into laboratory devices, while the ongoing research is aimed at the chemical design of new molecules, especially in the blue part of the spectrum. As such, inorganic quantum dots have generated interest in the OLED community as efficient alternative lumophores, whose saturated color emission can be tuned across the visible spectrum. Additionally QD-LEDs provide an accessible platform for investigating physical processes in hybrid organic/inorganic structures.
机译:通过改变量子点的尺寸和材料,可以在可见和近红外光谱范围内调节无机核-壳半导体纳米晶体量子点(QD)的发光,同时保持25%的窄带,高斯发射光谱和光致发光效率。围绕QD荧光团的有机封端基团有助于在有机溶剂中进行加工并将其结合到有机薄膜发光器件(LED)结构中。最近的报道表明,利用相分离过程可以将QDs自动组装到有机薄膜表面上,可以制造具有高亮度和小光谱FWHM的混合有机/无机QD-LED [Coe等人,Nature 420,800( 2002)]。相分离过程通常可以应用于包含各种粒径和材料的QD-LED的制造。迄今为止,已经证明了从540 nm到1,550 nm发射的QD-LED具有薄膜光发射器的外部量子效率。有机发光器件(OLED)已被确定为准备实现下一代平板显示器的主导新技术。与发光液晶显示器相比,OLED性能以宽视角,高色彩对比度和低功耗为例。实际上,当有机磷光分子用作发光材料时,内部量子效率可以达到100%。当今的OLED技术面临的重大挑战仍然是与电泵浦器件结构兼容的有机发光体的识别和合成。实验室设备中仅掺入了少数高效且长寿命的有机磷光体,而正在进行的研究则针对新分子的化学设计,尤其是在光谱的蓝色部分。这样,无机量子点已在OLED界引起了人们的兴趣,作为有效的替代荧光体,其饱和色发射可以在可见光谱范围内进行调整。此外,QD-LED提供了一个可访问的平台,用于研究有机/无机混合结构中的物理过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号