首页> 外文会议>Device packaging 2010 >Optimal Thermal Management of Microelectronic Packages
【24h】

Optimal Thermal Management of Microelectronic Packages

机译:微电子封装的最佳热管理

获取原文
获取原文并翻译 | 示例

摘要

The increasing trend in power levels and associatedrndensities leads to the need of design thermal optimization, atrnmodule and at system (module-board stack-up) levels. Thernmicroelectronics industry is facing multiple challenges tornpromote smaller, faster and cost-effective packages, copingrnwith potential thermal bottlenecks. The present studyrninvestigates packages, whose thermal and electricalrnperformances are superior to the classic (standard) packages.rnA 3-D conjugate numerical study was conducted tornevaluate the thermal performance of Gallium Arsenic (GaAs)rndie packaged in Quad Flat No Lead (QFN) packages forrnvarious wireless and networking applications. Two differentrnQFN packages are investigated: a standard package and arnPower package (PQFN) with thicker leadframe and solder diernattach. The thermal impact of die attach material, leadframernthickness, die pad size, and board structure is evaluated andrnprovides valuable information for product designers.rnTwo powering scenarios are investigated: 1) one forrnstandard operating parameters and 2) an alternative for extremernoperating powering scenarios. Results indicate that the peakrntemperature reached on the die for 3x3 mm QFN under normalrnpowering conditions is ~138.5°C (or 119°C/W junction-to-airrnthermal resistance), while for the extreme scenario, the junctionrntemperature is ~186°C (or 125°C/W junction-to-air thermalrnresistance). The top Au metal layer has limited impact onrnlateral heat spreading.rnUnder extreme powering conditions, the PQFN packagernreaches a peak temperature of ~126°C (66°C/W thermalrnresistance). A ~32% reduction in peak temperature is achievedrnwith the 5x5 PQFN package. The improvement is mainly duernto the larger package size, high conductivity die attachrnmaterial, thicker leadframe and more board thermal vias.rnA parametric study shows that the increase in leadframernthickness from 0.2 mm (8 mils) to 0.5 mm (20 mils) in the QFNrnpackage leads to only 3% reduction in peak temperature. Byrncomparison, the die attach material (conductive epoxy vs.rnsolder) has significant impact on overall reduction in peakrntemperature (~12%).rnExperimental measurements using Infrared (IR)rnMicroscope are performed to validate the numerical results.
机译:功率水平和相关密度的增长趋势导致对设计热优化,模块和系统(模块板堆叠)水平的需求。微电子工业面临着挑战,以解决更小的,更快的和具有成本效益的封装,以应对潜在的热瓶颈。本研究对热和电性能优于经典(标准)封装的封装进行了研究。进行了3-D共轭数值研究,以评估包装在四方扁平无铅(QFN)封装中的砷化镓(GaAs)的热性能。无线和网络应用程序。对两种不同的QFN封装进行了研究:标准封装和带有较厚引线框和焊料固定的arnPower封装(PQFN)。评估了芯片附着材料,引线框厚度,芯片焊盘尺寸和电路板结构的热影响,并为产品设计人员提供了有价值的信息。研究了两种供电方案:1)一种标准的工作参数,以及2)极端散热的供电方案。结果表明,在正常供电条件下,3x3 mm QFN裸片上达到的峰值温度约为138.5°C(或119°C / W的结至空气热阻),而在极端情况下,结温约为186°C(或125°C / W的结对空气热阻)。顶部的金金属层对横向散热的影响有限。在极端供电条件下,PQFN封装的峰值温度约为126°C(66°C / W的热阻)。使用5x5 PQFN封装可将峰值温度降低约32%。改善的主要原因是更大的封装尺寸,高导电性的芯片连接材料,更厚的引线框架和更多的电路板通孔。参数研究表明,QFN封装引线的引线框架厚度从0.2 mm(8 mils)增加到0.5 mm(20 mils)。峰值温度仅降低3%。通过比较,芯片连接材料(导电环氧树脂与焊料)对峰值温度的总体降低(〜12%)有显着影响。使用红外(IR)rn显微镜进行实验测量以验证数值结果。

著录项

  • 来源
    《Device packaging 2010》|2010年|p.1-7|共7页
  • 会议地点 Scottsdale/Fountain Hills AZ(US)
  • 作者

    Victor Adrian Chiriac;

  • 作者单位

    Technology Solutions OrganizationrnFreescale Semiconductor Inc.rn2100 Elliot Road, Mail Drop EL 725rnTempe, Arizona 85284rn(480) 413-6756 (Phone), (480) 413-4511 (Fax)rnVictor.chiriac@freescale.com;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 制造工艺;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号