首页> 外文会议>Energy-based treatment of tissue and assessment VIII >Finite Element Method (FEM) Model of the Mechanical Stress on Phospholipid Membranes from Shockwaves Produced in Nanosecond Electric Pulses (nsEP)
【24h】

Finite Element Method (FEM) Model of the Mechanical Stress on Phospholipid Membranes from Shockwaves Produced in Nanosecond Electric Pulses (nsEP)

机译:纳秒电脉冲(nsEP)产生的冲击波对磷脂膜的机械应力的有限元方法(FEM)模型

获取原文
获取原文并翻译 | 示例

摘要

The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated Shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from Shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.
机译:负责通过纳秒脉冲电场(nsEP)进行磷脂膜纳米穿孔的基本机制仍然未知。高电场通过导电介质的通道会产生两个主要的可能引起孔隙的主要因素:膜上的电场相互作用和暴露于电场的极性浸没介质的电致伸缩产生的冲击波。先前的工作已通过诸如传输晶格方法的模型集中于细胞膜上的电场相互作用。我们的目标是对由极性液体中高压脉冲的上升沿处形成的密度扰动引起的冲击波细胞膜相互作用进行建模,从而导致冲击波从电极向细胞膜传播。利用以前的细胞膜力学参数数据和nsEP生成的Shockwave参数,开发了基于Helmholtz声压方程的声波模型,并将其耦合到COMSOL中具有有限元建模的细胞膜模型。建立了声学结构相互作用模型,以根据胡克定律说明由冲击波和膜相互作用产生的谐波膜位移和应力。通过利用膜机械击穿参数(包括皮质应力极限和静水压力梯度)来预测穿孔。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Department of Electrical Engineering, University of Texas-San Antonio, San Antonio, Texas, USA;

    Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA;

    Department of Electrical Engineering, University of Texas-San Antonio, San Antonio, Texas, USA;

    Optical Radiation Bioeffects Branch, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas, USA;

    Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nanoporation; membrane dynamics; poration modeling;

    机译:纳米穿孔膜动力学孔隙建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号