首页> 外文会议>Frontiers in ultrafast optics: biomedical, scientific, and industrial applications XVII >Towards optical quality micro-optic fabrication by direct laser writing and chemical etching
【24h】

Towards optical quality micro-optic fabrication by direct laser writing and chemical etching

机译:通过直接激光写入和化学蚀刻实现光学质量的微光学制造

获取原文
获取原文并翻译 | 示例

摘要

Here we demonstrate the use of an advanced microfabrication technique, known as ultrafast laser inscription (ULI) with chemical etching, optimised for the fabrication of micro-optic systems in fused silica. ULI is a precision laser micromachining tool which relies on the high peak intensities associated with focused femtosecond pulses of light to locally modify the structure of a dielectric material. One manifestation of this modification is that the etch-rate of the modified regions can be increased by up to two orders of magnitude compared to that of pristine material, depending on the specific ULI parameters and the chemical etchant used. This capability means that ULI facilitates the repeatable fabrication of three-dimensional freeform structures in glass with micrometre resolution. Firstly, we present the results of investigations aimed at optimising the fabrication process and show that by controlling the laser polarisation during inscription, an etch-rate selectivity of 100 and a fivefold decrease in surface roughness can be achieved. We then demonstrate the characterisation of a microlens fabricated with optimum inscription parameters, including measurements of the lens surface profile, surface roughness and throughput, before demonstrating that the local surface roughness can be further decreased to below 5 nanometres by post-manufacture flame polishing.
机译:在这里,我们演示了一种先进的微细加工技术的使用,该技术被称为超快激光刻印(ULI),具有化学蚀刻功能,该技术已针对在熔融石英中制造微光学系统进行了优化。 ULI是一种精密的激光微加工工具,它依靠与飞秒聚焦的光脉冲相关的高峰值强度来局部修改介电材料的结构。这种修改的一个体现是,与原始材料相比,修改后的区域的蚀刻速率最多可以提高两个数量级,这取决于特定的ULI参数和所使用的化学蚀刻剂。这种能力意味着ULI有助于以微米级分辨率在玻璃中重复制造三维自由形状结构。首先,我们提出了旨在优化制造工艺的研究结果,结果表明,通过控制刻录过程中的激光偏振,可以实现100的蚀刻速率选择性和五倍的表面粗糙度降低。然后,我们证明了用最佳的铭刻参数制造的微透镜的特性,包括对透镜表面轮廓,表面粗糙度和生产量的测量,然后证明通过制造后的火焰抛光可以将局部表面粗糙度进一步降低至5纳米以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号