【24h】

The Design and Test of A High g MEMS Accelerometer

机译:高g MEMS加速度计的设计与测试

获取原文
获取原文并翻译 | 示例

摘要

Micro electro-mechanic system (MEMS) is one of the most promising new devices in the future. Investigations have been done almost in all fields, such as communication, medicament, sensor and RF. Because the dimension of these structures is between a few microns, theory which is compatible for the macroscopical things must be amended before being used here. There are just a few effective methods which can be used in the design of MEMS devices. Finite element is one of the most effective method that can be used in the design. ANSYS is a useful finite element analysis software. It can simulate the anisotropy of the silicon material. What's more, damping effect of the film fluid can be simulated. In this paper, a micro silicon accelerometer capable of surviving and measuring very high accelerations is designed. Finite element method is used to determine the stress distribution when high accelerations occur and the dynamic response under a strike. Damping coefficient of the film fluid in the micro structure is difficult to calculate. Because continuum theory can not be used when the Knudsen number flow regime is great. The fluid element is used to model the fluid domain between a fixed surface and a structure moving normally to that surface. In the design of this high g accelerometer, squeeze damping effect is considered and calculated. It provides a way to determine thin-film damping effect. After the accelerometer is fabricated, the drop hammer test and Hopkinson test have been done. The test result indicates that capacitance MEMS sensor is capabile of surviving at as high as 70,000 g acceleration.
机译:微机电系统(MEMS)是未来最有希望的新设备之一。几乎在所有领域都进行了调查,例如通信,药物,传感器和射频。因为这些结构的尺寸在几微米之间,所以在这里使用之前必须修改与宏观事物相容的理论。仅有几种有效的方法可用于MEMS器件的设计。有限元是可以在设计中使用的最有效方法之一。 ANSYS是有用的有限元分析软件。它可以模拟硅材料的各向异性。此外,可以模拟薄膜流体的阻尼效果。本文设计了一种能够幸存并测量非常高的加速度的微型硅加速度计。有限元方法用于确定发生高加速度时的应力分布以及在撞击下的动态响应。膜流体在微结构中的阻尼系数很难计算。当克努森数流状态很好时,因为不能使用连续论。流体元件用于对固定表面和垂直移动到该表面的结构之间的流体域进行建模。在这种高g加速度计的设计中,考虑并计算了挤压阻尼效应。它提供了确定薄膜阻尼效果的方法。加速度计制作完成后,落锤测试和霍普金森测试已完成。测试结果表明,电容MEMS传感器能够以高达70,000 g的加速度生存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号