首页> 外文会议>International Symposium on the Nutrition of Herbivores(ISNH-7); 20070917-22; Beijing(CN) >Bacterial genome mining to advance enzymology for plant cell wall degradation
【24h】

Bacterial genome mining to advance enzymology for plant cell wall degradation

机译:细菌基因组挖掘可促进植物细胞壁降解的酶学

获取原文
获取原文并翻译 | 示例

摘要

Strategies for harnessing the energetic potential inherent in cellulosic biomass are confounded by the recalcitrant nature of these complex carbohydrate polymers. To extract nutrients from cellulose, herbivores harbor microbial symbionts within their digestive tracts that are capable of catabolyzing plant cell wall material into a form that is readily metabolized by the host. Importantly, these bacteria may hold the key to efficient utilization of plant biomass as a renewable energy source; however, our knowledge of the detailed mechanisms in which cellulolytic/hemicellulolytic microbes hydrolyze complex fibers Into their principal carbohydrate components is incomplete. We believe that a multidisciplinary approach merging transcriptional profiling studies, functional genomics, bioinformatics, structure determination and enzyme homology modeling will yield significant Insight Into the repertoire of degradation enzymes and the catalytic strategies employed by hydrolytic enzymes of plant cell wall degrading microbes. Utilizing a bioinformatics approach, we have identified and annotated a cluster of 10 putative glycoside hydrolases from a rumen fiber-degrading bacterium. Additionally, a computational approach was employed to obtain a three-dimensional homology model for a putative family 3?glycosidase from C. cellulolyticum using the barley ?D-glucan glucohydrolase crystal structure as a template. Our results revealed that while the two glycosidases shared only 35% sequence homology, the positioning of active site residues about the bound transition-state analog was remarkably conserved. Further studies utilizing this multidisciplinary approach will provide an excellent foundation for enhancing the catalytic capacity of hydrolytic enzymes through rational approaches and ultimately to optimize the conversion of biomass to milk and meat in the animal production industry and carbon-based fuels in the emerging biofuels industry.
机译:这些复杂的碳水化合物聚合物的顽强特性使利用纤维素生物质中固有的能量潜力的策略感到困惑。为了从纤维素中提取营养,食草动物在其消化道内带有微生物共生体,它们能够将植物细胞壁材料分解为易于被宿主代谢的形式。重要的是,这些细菌可能是有效利用植物生物质作为可再生能源的关键。但是,我们对纤维素分解/半纤维素分解微生物将复杂纤维水解成其主要碳水化合物成分的详细机理的知识尚不完善。我们相信,将转录谱分析研究,功能基因组学,生物信息学,结构确定和酶同源性建模相结合的多学科方法将对降解酶和植物细胞壁降解微生物水解酶所采用的催化策略产生重要的见解。利用生物信息学方法,我们从瘤胃纤维降解细菌中鉴定并注释了10个推定的糖苷水解酶簇。另外,采用一种计算方法,以大麦芽胞苷-D-葡聚糖葡糖水解酶晶体结构为模板,从解纤梭菌中获得了一个推定的家族3′糖苷酶的三维同源性模型。我们的结果表明,虽然两个糖苷酶仅共享35%的序列同源性,但结合位点过渡态类似物的活性位点残基的定位却非常保守。利用这种多学科方法的进一步研究将为通过合理的方法增强水解酶的催化能力,并最终优化动物生产行业中的生物质向牛奶和肉类以及​​新兴生物燃料行业中的碳基燃料的转化提供良好的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号