首页> 外文会议>International Symposium on the Nutrition of Herbivores >Bacterial genome mining to advance enzymology for plant cell wall degradation
【24h】

Bacterial genome mining to advance enzymology for plant cell wall degradation

机译:细菌基因组采矿预测植物细胞壁降解的酶学

获取原文

摘要

Strategies for harnessing the energetic potential inherent in cellulosic biomass are confounded by the recalcitrant nature of these complex carbohydrate polymers. To extract nutrients from cellulose, herbivores harbor microbial symbionts within their digestive tracts that are capable of catabolyzing plant cell wall material into a form that is readily metabolized by the host. Importantly, these bacteria may hold the key to efficient utilization of plant biomass as a renewable energy source; however, our knowledge of the detailed mechanisms in which cellulolytic/hemicellulolytic microbes hydrolyze complex fibers Into their principal carbohydrate components is incomplete. We believe that a multidisciplinary approach merging transcriptional profiling studies, functional genomics, bioinformatics, structure determination and enzyme homology modeling will yield significant Insight Into the repertoire of degradation enzymes and the catalytic strategies employed by hydrolytic enzymes of plant cell wall degrading microbes. Utilizing a bioinformatics approach, we have identified and annotated a cluster of 10 putative glycoside hydrolases from a rumen fiber-degrading bacterium. Additionally, a computational approach was employed to obtain a three-dimensional homology model for a putative family 3?glycosidase from C. cellulolyticum using the barley ?D-glucan glucohydrolase crystal structure as a template. Our results revealed that while the two glycosidases shared only 35% sequence homology, the positioning of active site residues about the bound transition-state analog was remarkably conserved. Further studies utilizing this multidisciplinary approach will provide an excellent foundation for enhancing the catalytic capacity of hydrolytic enzymes through rational approaches and ultimately to optimize the conversion of biomass to milk and meat in the animal production industry and carbon-based fuels in the emerging biofuels industry.
机译:利用纤维素生物质中固有的能量潜力的策略被这些复合碳水化合物聚合物的顽固性质混淆。为了从纤维素中提取营养物质,在其消化道内的食草酸患者患者的微生物共生,其能够将植物细胞壁材料分解成被宿主易于代谢的形式。重要的是,这些细菌可以使关键能够有效地利用植物生物质作为可再生能源;然而,我们知道纤维素分解/半纤维素微溶液将复合纤维水解成其主要碳水化合物组分的详细机制是不完整的。我们认为,多学科方法合并转录分析研究,功能基因组学,生物信息学,结构测定和酶同源性建模将产生显着深入的降解酶的曲目和植物细胞壁壁的水解酶降解微生物的水解酶的催化策略。利用生物信息学方法,我们已经鉴定并向瘤胃纤维降解细菌鉴定并注释了10个推定的糖苷水解酶。另外,使用计算方法来获得用于诱发的家庭3β的三维同源模型3β纤维素酶,Cellulolyticum使用大麦βD-葡聚糖葡糖糖浆酶晶体结构作为模板。我们的研究结果表明,虽然两种糖苷酶仅共有35%的顺序同源性,但是有关围绕过渡状态模拟的有源部位残留物的定位显着保守。利用这种多学科方法的进一步研究将提供优异的基础,用于通过合理的方法提高水解酶的催化能力,最终优化生物量在新兴生物燃料行业中的碳生产行业和碳燃料中的牛奶和肉类转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号