首页> 外文会议>Laser-based micro- and nanoprocessing IX >Laser micro-engineering of functionalized cyclic olefin polymers for microfluidic applications
【24h】

Laser micro-engineering of functionalized cyclic olefin polymers for microfluidic applications

机译:用于微流体应用的功能化环烯烃聚合物的激光微工程

获取原文
获取原文并翻译 | 示例

摘要

Direct-write laser processing has been demonstrated to be capable of both surface patterning of micro- and nanoscale structures on polymer surfaces without significant modification of the surface chemistry or optical transmission of the laser processed area. In this work, the creation of microchannels via direct-write laser processing of 188 μm thickness cyclic olefin polymers is demonstrated, along with a route towards channel functionalization. Cyclic olefin polymers (COP) are an emerging class of polymers noted for their high chemical resistance, biocompatibility and higher optical transparency when compared to other common polymers. These properties make them excellent substrates for the fabrication of microfluidic devices. This paper presents the first investigation into infrared laser processing of COP using a 1064 run Nd:YAG laser. Scanning electron microscopy and Raman spectroscopy were utilized to investigate the morphology and composition of these laser textured surfaces. A route for functionalization of these substrates for chemical and biological speciation and separation was examined using carbon nanoparticles. The nanoparticles were produced using pulsed laser ablation in liquid (PLAL) which has been reported as a fast and adaptable method for nanoparticle production. The nanoparticles produced were using transmission electron microscopy while the coating of substrates with these CNPs was examined using SEM. These results are discussed in the context of development of a new route for achieving surfaces optimized for microfiuidic-based separations and speciation.
机译:已经证明直接写入激光加工能够在聚合物表面上对微米级和纳米级结构进行表面图案化,而不会显着改变激光加工区域的表面化学或光学透射率。在这项工作中,展示了通过对188μm厚度的环状烯烃聚合物进行直接写入激光处理来创建微通道,以及实现通道功能化的途径。环烯烃聚合物(COP)是新兴的一类聚合物,与其他普通聚合物相比,它们具有较高的耐化学性,生物相容性和较高的光学透明性。这些特性使它们成为制造微流体装置的极佳基材。本文介绍了使用1064nm Nd:YAG激光器对COP进行红外激光处理的首次研究。扫描电子显微镜和拉曼光谱被用来研究这些激光织构表面的形态和组成。使用碳纳米颗粒检查了用于化学和生物形态形成和分离的这些底物功能化的途径。使用液体中的脉冲激光烧蚀(PLAL)来生产纳米颗粒,据报道这是一种快速且适用于纳米颗粒生产的方法。产生的纳米颗粒使用透射电子显微镜,同时使用SEM检查具有这些CNP的基材的涂层。这些结果将在开发新路线的背景下进行讨论,以实现针对基于微流体的分离和形态优化的表面。

著录项

  • 来源
    《Laser-based micro- and nanoprocessing IX》|2015年|93511N.1-93511N.7|共7页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Advanced Processing Technology Research Centre, School of Mechanical Engineering, Dublin City University, Ireland,Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Ireland,National Centre for Plasma Science and Technology, Dublin City University, Ireland;

    Advanced Processing Technology Research Centre, School of Mechanical Engineering, Dublin City University, Ireland,Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Ireland;

    Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Ireland,School of Chemical Sciences, Dublin City University, Ireland;

    Advanced Processing Technology Research Centre, School of Mechanical Engineering, Dublin City University, Ireland,Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Ireland,School of Chemical Sciences, Dublin City University, Ireland;

    Advanced Processing Technology Research Centre, School of Mechanical Engineering, Dublin City University, Ireland,Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Ireland,National Centre for Plasma Science and Technology, Dublin City University, Ireland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cyclic olefin polymer; pulsed laser ablation; carbon nanoparticles; functionalization; microfluidics; Nd:YAG;

    机译:环状烯烃聚合物;脉冲激光烧蚀碳纳米颗粒;功能化;微流体钕:钇铝石榴石;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号