首页> 外文会议>AHS International annual forum >Significance Of Floquet Eigenvalues And Eigenvectors For The Dynamics Of Time-Varying Systems
【24h】

Significance Of Floquet Eigenvalues And Eigenvectors For The Dynamics Of Time-Varying Systems

机译:浮点特征值和特征向量对时变系统动力学的意义

获取原文

摘要

The history of the analysis of periodic-coefficient systems is surveyed along with a discussion of the long-standing issue of how to interpret the imaginary part of the Floquet system exponent (which arises from the complex logarithm of the eigenvalues of the Transition Matrix). In particular, it is well-known that one may add or subtract any integer multiple of the fundamental frequency to the imaginary part of the system exponent; and this arbitrariness has resulted both in confusion and in the mistaken idea that there must be one "correct" integer to be added. A similar conundrum has arisen as to how to interpret the case in which the eigenvalues of the Floquet Transition Matrix split on the negative real axis. In that case, the system exponents no longer come in complex-conjugate pairs; and there has been confusion as to how to interpret the non-conjugate roots and whether or not to use different integers for the different roots.This paper will demonstrate that the choice of integer multiple to be added (in either the general case or the case of a negative-real split) is an entirely arbitrary bookkeeping decision. This is due to the fact that the Floquet eigenvector, which multiplies the exponential term, is periodic in time and contains in principle all of the integer-multiple frequencies in varying degrees. Thus, it is the product of the eigenvector and exponential that must be used to determine frequency content; and that product is unique. The uniqueness is established because-once an integer is chosen-that choice in turn affects the computation of the periodic eigenvector. It follows that the resulting product of the exponential and the eigenvector remains unique-independent of the choice of integer. This product contains the true frequency content of the system dynamics including the relative strengths of each integer-multiple harmonic. Examples are given in the paper.
机译:对周期系数系统分析的历史进行了调查,并讨论了一个长期存在的问题,即如何解释Floquet系统指数的虚部(源于过渡矩阵特征值的复数)。特别地,众所周知,可以将基本频率的任何整数倍加或减到系统指数的虚部。这种任意性既导致混乱又导致错误的观念,即必须添加一个“正确的”整数。关于如何解释浮球转换矩阵的特征值在负实轴上分裂的情况,也出现了类似的难题。在这种情况下,系统指数不再是复共轭对。对于如何解释非共轭根以及对于不同根是否使用不同的整数一直存在困惑。 本文将证明,要添加的整数倍数的选择(在一般情况下还是在负实数拆分的情况下)是完全任意的簿记决定。这是由于这样的事实,即乘以指数项的Floquet特征向量在时间上是周期性的,并且原则上包含所有程度不同的整数倍频率。因此,必须使用特征向量和指数的乘积来确定频率含量。该产品是独一无二的。建立唯一性是因为一旦选择了整数,该选择又会影响周期特征向量的计算。由此得出,指数和特征向量的结果乘积保持唯一,与整数的选择无关。该乘积包含系统动力学的真实频率内容,包括每个整数倍谐波的相对强度。本文提供了示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号