首页> 外文会议>International astronautical congress >DEVELOPMENT OF AN INTEGRATED SPACECRAFT GUIDANCE, NAVIGATION, CONTROL SUBSYSTEM FOR AUTOMATED PROXIMITY OPERATIONS
【24h】

DEVELOPMENT OF AN INTEGRATED SPACECRAFT GUIDANCE, NAVIGATION, CONTROL SUBSYSTEM FOR AUTOMATED PROXIMITY OPERATIONS

机译:自动化近距离操作的综合航天器制导,导航和控制子系统的开发

获取原文

摘要

This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control (GN&C) subsystem for a small satellite on-orbit inspection application. The resulting GN&C subsystem performs proximity operations (ProxOps) without human-in-the-loop interaction. The paper focuses on the integration and testing of GN&C software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between various GN&C components must be defined to achieve the automation goal. The GN&C subsystem for the Prox-1 satellite is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The Prox-1 mission involves deploying the LightSail 3U CubeSat, entering into a leading or trailing orbit of LightSail using ground-in-the-loop commands, and then performing automated ProxOps through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform its GN&C operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Prox-1 GN&C components are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using decision logic to autonomously determine when certain actions should be performed. The complexity of this decision logic is the main challenge of this process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual GN&C hardware and software components. Once the integrated GN&C simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. The subsystem is tested using hardware-in-the-loop on the flight computers and other hardware.
机译:本文介绍了针对小型卫星在轨检查应用的高度自动化的制导,导航和控制(GN&C)子系统的开发和验证过程。最终的GN&C子系统无需人工交互即可执行邻近操作(ProxOps)。本文着重于GN&C软件的集成和测试,以及决策逻辑的发展,以解决如何有效实现这样的系统以实现全自动的问题。该过程之所以独特,是因为必须考虑多种操作方案,并且必须定义各种GN&C组件之间的一组复杂交互以实现自动化目标。乔治亚理工学院的空间系统设计实验室目前正在为Prox-1卫星开发GN&C子系统。 Prox-1任务包括部署LightSail 3U CubeSat,使用地面在环命令进入LightSail的前,后轨道,然后通过编队飞行和自然运动绕行机动执行自动ProxOps。诸如此类的操作可用于许多情况,包括在轨检查,加油,维修,建造,侦察,对接和减少碎片活动。 Prox-1使用机载传感器和成像仪器在LightSail的在轨检查过程中执行其GN&C操作。导航过滤器基于目标航天器的图像执行相对轨道确定,制导算法执行自动机动计划。回转和跟踪控制器将姿态致动命令发送到一组控制力矩陀螺仪,其他控制器则管理去饱和,脱胶,推进器发射和目标获取/恢复。所有Prox-1 GN&C组件均在MATLAB / Simulink六自由度仿真环境中开发,并使用决策逻辑进行集成,以自主确定何时应执行某些操作。该决策逻辑的复杂性是此过程的主要挑战,Simulink中的Stateflow工具用于建立逻辑关系并管理各个GN&C硬件和软件组件之间的数据流。一旦在MATLAB / Simulink中完全开发了集成的GN&C仿真,这些算法就会自动编码为C / C ++,并集成到飞行软件中。使用飞行计算机和其他硬件上的在环硬件对子系统进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号