首页> 外文会议>International Astronautical Congress >DEVELOPMENT OF AN INTEGRATED SPACECRAFT GUIDANCE, NAVIGATION, CONTROL SUBSYSTEM FOR AUTOMATED PROXIMITY OPERATIONS
【24h】

DEVELOPMENT OF AN INTEGRATED SPACECRAFT GUIDANCE, NAVIGATION, CONTROL SUBSYSTEM FOR AUTOMATED PROXIMITY OPERATIONS

机译:开发用于自动邻近操作的综合航天器引导,导航和控制子系统

获取原文

摘要

This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control (GN&C) subsystem for a small satellite on-orbit inspection application. The resulting GN&C subsystem performs proximity operations (ProxOps) without human-in-the-loop interaction. The paper focuses on the integration and testing of GN&C software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between various GN&C components must be defined to achieve the automation goal. The GN&C subsystem for the Prox-1 satellite is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The Prox-1 mission involves deploying the LightSail 3U CubeSat, entering into a leading or trailing orbit of LightSail using ground-in-the-loop commands, and then performing automated ProxOps through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform its GN&C operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Prox-1 GN&C components are developed in a MATLAB/Simulink six degree-of- freedom simulation environment and are integrated using decision logic to autonomously determine when certain actions should be performed. The complexity of this decision logic is the main challenge of this process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual GN&C hardware and software components. Once the integrated GN&C simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. The subsystem is tested using hardware-in-the-loop on the flight computers and other hardware.
机译:本文介绍了用于小型卫星在轨道检查应用的高度自动化指导,导航和控制(GN&C)子系统的开发和验证过程。生成的GN&C子系统执行没有人在循环交互的接近操作(Proxops)。本文侧重于GN&C软件的集成和测试以及决策逻辑的开发,以解决如何为全自动化有效实施此类系统的问题。此过程是唯一的,因为必须考虑多个操作场景,并且必须定义各种GN&C组件之间的复杂交互,以实现自动化目标。佐治亚理工学院的空间系统设计实验室目前正在开发Prox-1卫星的GN&C子系统。 Prox-1任务涉及部署Lighteail 3U CubeSat,使用循环命令进入LightAil的前导或尾随轨道,然后通过形成飞行和自然运动环形气动运转进行自动化代理。这些操作可以用于许多场景,包括轨道检查,加油,修复,建筑,侦察,对接和碎片缓解活动。 Prox-1使用车载传感器和成像仪器,在Lightsail的On-Orbit检查期间执行其GN&C操作。导航滤波器基于目标航天器的图像执行相对轨道确定,并引导算法进行自动化操纵计划。 SLOW和跟踪控制器将姿态致动命令发送到一组控制力矩陀螺仪,以及其他控制器管理去饱和,撤消,推进器射击和目标采集/恢复。所有PROX-1 GN&C组件都是在MATLAB / SIMULINK六个自由度模拟环境中开发的,并且使用决策逻辑集成,以自主地确定应执行某些操作何时执行某些操作。该决策逻辑的复杂性是该过程的主要挑战,Simulink中的状态流工具用于建立逻辑关系并管理每个GN&C硬件和软件组件之间的数据流。一旦集成的GN&C仿真在Matlab / Simulink中完全开发,该算法将自动介绍至C / C ++并集成到飞行软件中。使用飞行计算机和其他硬件上的硬件循环测试子系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号