【24h】

Intelligent Computation of Reachability Sets for Space Missions

机译:太空任务可达性集的智能计算

获取原文

摘要

This paper introduces a new technique for intelligently exploring the reachability set of a spacecraft: the set of trajectories from a given initial condition that are possible under a specified range of control actions. The high dimension of this problem and the nonlinear nature of gravitational interactions make the geometry of these sets complicated, hard to compute, and all but impossible to visualize. Currently, exploration of a problem's state space is done heuristically, based on previously identified solutions. This potentially misses out on improved mission design solutions that are not close to previous approaches. The goal of the work described here is to map out reachability sets automatically. This would not only aid human mission planners, but also allow a spacecraft to determine its own course without input from Earth-based controllers. Brute-force approaches to this are computationally prohibitive, so one must focus the effort on regions that are of interest: where neighboring trajectories diverge quickly, for instance, or come close to a body that the spacecraft is orbiting. In this paper, we focus on the first of those two criteria; the goal is to identify regions in the system's state space where small changes have large effects-or vice versa-and concentrate the computational mesh accordingly.
机译:本文介绍了一种新技术,用于智能地探索航天器的可到达性集合:在给定的初始条件下,在指定的控制动作范围内可能出现的一组轨迹。这个问题的高维度和引力相互作用的非线性性质使得这些集合的几何形状复杂,难以计算并且几乎无法可视化。当前,基于先前确定的解决方案,以启发式方式探索问题的状态空间。这可能会错过与先前方法不相近的改进的任务设计解决方案。此处描述的工作目标是自动绘制可达性集。这不仅可以帮助人类任务计划人员,而且还可以使航天器确定自己的航向,而无需来自地球控制器的输入。蛮力方法在计算上是禁止的,因此必须将精力集中在感兴趣的区域:例如,相邻的轨迹迅速偏离或接近或接近航天器正在运行的物体。在本文中,我们重点关注这两个标准中的第一个。目的是确定系统状态空间中微小变化影响较大(反之亦然)的区域,并相应地集中计算网格。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号