首页> 外文会议>IEEE Aerospace Conference >Next-generation NASA Earth-orbiting relay satellites: Fusing optical and microwave communications
【24h】

Next-generation NASA Earth-orbiting relay satellites: Fusing optical and microwave communications

机译:下一代NASA地球轨道继电器卫星:融合光学和微波通信

获取原文

摘要

NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019. Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as adding new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. This paper also explores how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the communications space segment. For optical communications, the backbone of this effort is the adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out to make way for commercial business models that satisfy NASA's satellite communications requirements. The competition provided by new entrants in the space communications industry may result in a future in which all NASA communications needs can be satisfied commercially.
机译:NASA目前正在考虑制的架构和概念,用于代替自1983年以来一直在飞行的跟踪和数据中继卫星(TDRS)星座的概念.TDRS-M在2017年8月推出的第二个TDRS的最后一代。 ,延长了2030年的TDRS星座的寿命。然而,存在重新设计地球同步地球接力卫星的概念的机会。继电器卫星客户的需求在过去34年里,自第一个TDRS发射以来,在过去的34年里发生了巨大变化。随着空间通信传统RF频谱的可用性,需要更大的带宽减少以及对地站访问的需求增长。下一代NASA中继卫星将提供在这些新约束中具有因素的操作。在本文中,我们描述了采用光学和RF通信的地球同步中继卫星的异构星座。新的星座将使用户到空间继电器,空间中继到空间继电器和空间中继到地链路形成的新光通信服务。它将在2013年开始农历激光通信示范的经验和2019年推出的激光通信继电器演示。同时建立光学通信空间段,TDRS星座中的航天器将被RF继电器卫星用目标取代TDRS功能的子集。 TDRS服务模型的这种分解将允许灵活地补充遗留用户的需求以及为未来用户添加新功能。它还将允许美国政府访问推出riceShare和托管的有效载荷,以前没有可用。本文还探讨了下一代地球中继卫星在商业提供商到通信空间段的机会上提供了显着提升。对于光学通信,这项努力的骨干是通过地面高带宽电信行业的商业技术进入光学有效载荷。对于RF通信,软件定义的无线电,高速数字信号处理技术和来自诸如5G多载波等区域的网络的爆炸将是重要的。未来的商业提供商不会仅限于一小组大型航空航天公司。最终,完全拥有的政府拥有和繁殖的卫星通信将逐步淘汰,为满足美国宇航局的卫星通信要求的商业商业模式。空间通信行业的新进入者提供的竞争可能会导致未来,可以在商业上满足所有NASA通信需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号