首页> 外文会议>ASME/BATH symposium on fluid power and motion control >SYSTEM SYNTHESIS AND CONTROLLER DESIGN OF A NOVEL PUMP CONTROLLED STEER-BY-WIRE SYSTEM EMPLOYING MODERN CONTROL TECHNIQUES
【24h】

SYSTEM SYNTHESIS AND CONTROLLER DESIGN OF A NOVEL PUMP CONTROLLED STEER-BY-WIRE SYSTEM EMPLOYING MODERN CONTROL TECHNIQUES

机译:采用现代控制技术的新型泵控线控转向系统的系统综合与控制器设计

获取原文

摘要

The demand for power steering systems primarily stemmed from the need for providing assistance to operators in achieving their heading directions, especially as transportation vehicles kept growing in size and mass. While the main requirements for the primitive systems were adequate assistance levels and acceptable controllability, today's requirements are much different. Given the increased awareness and attention to energy efficiency, productivity, and safety, the field for researching alternative technologies is virtually open. Present-day power steering architectures include hydraulic, electric, and electro-hydraulic structures, which vary based on their energy source, energy transmission, and energy management schemes. Hydraulic power steering is plagued with poor energy efficiency mainly due to throttling losses associated with hydraulic control valves. Electric power steering systems offer better energy efficiency with on-demand power supply and result in improved packaging constraints, but suffer from power limitations at larger scales. State-of-the-art electrohydraulic steering systems take advantage of the high power density and efficiency of fluid power, but use electronically controlled valves that still suffer from energy inefficiency. This paper introduces a novel electro-hydraulic power steering system that utilizes a proven energy-saving technology, pump displacement control (DC), which eliminates throttling losses associated with hydraulic control valves by controlling the displacement of a variable displacement pump. DC has been applied to the working hydraulics of mobile machines, active vibration damping, and machine power management strategies. However, for the first time this technology is being investigated and applied to steering systems, which presents a unique opportunity to solve the pressing challenges and highlight the benefits of such systems. A DC steering system lends itself to high energy efficiency (lower fuel consumption / emissions), greater machine productivity and reduced operator fatigue, and active safety for counteracting instabilities. The paper presents the new concept; reviews the dynamic models of the hydraulics subsystem and the dynamics subsystem; summarizes the system synthesis with focus on stability; and finally describes the primary controller design based on modern control techniques via state space formulation and full state feedback methods. To allow for designing a controller at the system level, vehicle dynamics equations of motion and pressure-flow equations are merged together to form a single-input single-output (SISO) system with the desired input and output in mind. Simulation results are provided to validate the control algorithm relative to the specified performance requirements.
机译:对动力转向系统的需求主要源于为操作员提供协助以实现其前进方向的需求,特别是在运输车辆的尺寸和质量不断增长的情况下。虽然原始系统的主要要求是足够的协助水平和可接受的可控制性,但是今天的要求却大不相同。随着人们对能源效率,生产率和安全性的认识和关注度提高,研究替代技术的领域实际上是开放的。当今的动力转向架构包括液压,电动和电动液压结构,这些结构根据其能量来源,能量传输和能量管理方案而有所不同。液压动力转向的能源效率很低,这主要是由于与液压控制阀相关的节流损失。电动助力转向系统通过按需供电可提供更好的能源效率,并改善了包装限制,但在较大规模上存在功率限制。先进的电动液压转向系统利用了高功率密度和流体动力效率的优势,但使用的电子控制阀仍会导致能源效率低下。本文介绍了一种新颖的电动液压助力转向系统,该系统采用了行之有效的节能技术,即泵排量控制(DC),可通过控制可变排量泵的排量来消除与液压控制阀相关的节流损失。 DC已应用于移动机器的工作液压系统,主动减振以及机器电源管理策略。然而,这项技术首次被研究并应用于转向系统,这为解决紧迫的挑战并突出此类系统的优势提供了独特的机会。直流转向系统可提高能源效率(降低燃油消耗/排放量),提高机器生产率并降低操作员疲劳度,并具有主动安全性,可抵抗不稳定因素。本文提出了新的概念。审查液压子系统和动力学子系统的动力学模型;总结系统综合性,着重于稳定性;最后,通过状态空间公式化和全状态反馈方法,描述了基于现代控制技术的主控制器设计。为了允许在系统级别设计控制器,将运动的车辆动力学方程式和压力-流量方程式合并在一起,以形成考虑了所需输入和输出的单输入单输出(SISO)系统。提供仿真结果以相对于指定的性能要求来验证控制算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号