首页> 外文会议>IEEE International Meeting on Power, Electronics and Computing >Model of thrust/Load-Torque in terms of geometric parameters of the blade for design and simulation of small scale propellers used in miniature UAVs
【24h】

Model of thrust/Load-Torque in terms of geometric parameters of the blade for design and simulation of small scale propellers used in miniature UAVs

机译:用于设计和仿真微型无人机的小规模螺旋桨的叶片的几何参数方面推力/负载扭矩模型

获取原文

摘要

Autonomous flight of miniature UAVs demands high performance actuators satisfying the requirements of modern control algorithms. Specially for quadrotors, where lift and control forces are the result of a synchronized action of the four BLDC/propeller actuators, the form of their propellers are fundamental to attain a fast and reliable dynamic response. In this paper, we present a mathematical model of the thrust and the Load-Torque produced by a small scale propeller used in miniature quadrotors in terms of the geometric properties of the blade assuming an operation in hover mode. This model is intended to provide a useful expression for simulation analysis with design purposes. The model is based on the Blade Element Theory and the Euler equation for fluids, and describes the Lift on a thin and curved airfoil with a known angle of attack, as the normal acceleration between the deflected streamlines of an incompressible fluid. This allows the calculation of the thrust and the Load-Torque of a turning propeller in terms of the geometric parameters of its blades, i.e. radial and cross section length, curvature and angle of attack, but preserving the conventional results relating the thrust to a square function of the rotational speed of the propeller. As a reference, we include the conventional model based on experimental coefficients of Lift and Drag before introducing our approach, and then, we illustrate the advantage of our approach with an example based on a propeller with blades of fixed and constant pitch angle and constant width, and finally, we briefly discuss about the evidence, based on experimental and simulation data obtained in the literature, that validates our approach.
机译:自主式无人机的飞行要求满足现代控制算法的要求的高性能执行器。特别是四轮压力机,其中电梯和控制力是四个BLDC /螺旋桨执行器的同步动作的结果,其螺旋桨的形式是达到快速可靠的动态响应的基础。在本文中,我们介绍了由微型四轮压积器中使用的小刻度螺旋桨产生的推力和负载扭矩的数学模型,这就是在悬停模式下的操作的刀片的几何特性方面。该模型旨在提供具有设计目的的模拟分析的有用表达。该模型基于叶片元件理论和流体的欧拉方程,并描述了具有已知攻角的薄且弯曲的翼型上的升降机,作为不可压缩流体的偏转流线之间的正常加速度。这允许在其叶片的几何参数方面计算转动螺旋桨的推力和负载扭矩,即径向和横截面长度,曲率和攻击角度,但保持与正方形的推力相关的常规结果螺旋桨转速的功能。作为参考,我们包括基于实验系数的传统模型在引入我们的方法之前,然后,我们说明了我们的方法的优点,其具有基于螺旋桨的示例,其具有固定和恒定俯仰角叶片和恒定宽度最后,我们简要讨论了基于文献中获得的实验和仿真数据的证据,验证了我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号