首页> 外文会议>AIAA space and astronautics forum and exposition >A Conceptual Mars Exploration Vehicle Architecture with Chemical Propulsion, Near-Term Technology, and High Modularity to Enable Near-Term Human Missions to Mars
【24h】

A Conceptual Mars Exploration Vehicle Architecture with Chemical Propulsion, Near-Term Technology, and High Modularity to Enable Near-Term Human Missions to Mars

机译:具有化学推进,近期技术和高模块化的概念火星探测车架构,可实现人类近期对火星的任务

获取原文

摘要

The Mars Exploration Vehicle (MEV) Architecture was first presented in January, 2012. It describes a possible method to accomplish a long-stay conjunction class Mars surface exploration mission, for 2033 or 203S opportunities, with a four-person crew and using chemical propulsion, existing or near-term technology, and common modular elements to minimize development costs. It utilizes a common Cryogenic Propulsion Stage (CPS) that can be configured as an Earth Departure Stage (EDS) or Mars Transfer Stage (MTS). It satisfies mission requirements using a combination of Earth orbit rendezvous, aerobraking of unmanned landers, Mars orbit rendezvous, and Mars surface rendezvous. The purpose of this paper is to present major enhancements to the architecture and provide additional design details. The MEV architecture is assembled in low Earth orbit (LEO) from subassemblies launched by Space Launch System rockets and includes a Mars Crew Transfer Vehicle (MCTV) with a crew of four, two redundant unmanned Mars Lander Transfer Vehicles (MLTVs), and four redundant Booster Refueling Vehicles which top off CPS LH_2 propellants before Trans-Mars Injection (TMI). The MCTV and its assembly sequence were redesigned to reduce mechanical complexity, enhance design commonality, simplify LEO assembly, and improve mission reliability. Each MLTV utilizes one EDS and one MTS and carries three landers as payload: The Mars Personnel Lander (MPL) provides two-way transport for four crew members between low Mars orbit (LMO) and surface. Two unmanned Mars Cargo Landers, a habitat variant (MCL-H) and a rover variant (MCL-R), provide one-way cargo delivery to the surface. Additional MCL-R design details will be presented in this paper. The MLTVs escape from LEO, transit to Mars, and propulsively brake into a highly elliptical orbit. The landers separate, aerobrake, circularize their orbits, and rendezvous with the MCTV in LMO. Additional aerobraking design details will be presented in this paper. The MCTV utilizes three EDS, one MTS, and: (1) The Orion Multipurpose Crew Vehicle transports the crew from Earth to LEO, provides propulsion, and returns the crew to Earth using a direct entry at the nominal mission end or after aborts. (2) Three Deep Space Vehicles (DSVs), modified MCL-H landers, provide crew habitation space, life support consumables, passive biological radiation shielding, and propulsion. (3) An Artificial Gravity Module permits the MCTV to vary its geometry and rotate to generate artificial gravity for the crew and provides photo-voltaic power generation and deep space communications. The MCTV escapes from LEO, transits to Mars, propulsively brakes into LMO, and docks the six landers from the MLTVs. Cargo and crew landers perform Mars entry, descent, and landing, and rendezvous and dock on the surface to form an exploration base camp. After completion of surface exploration, the crew returns to LMO in the MPL, docking with the MCTV for the return trip to Earth. With inherent modularity, the MEV architecture could enable an economical "flexible path" approach to achieve progressively more ambitious "stepping stone" human solar system exploration missions: starting with flights in Earth and lunar orbit, progressing through missions to near-Earth asteroids and the moons of Mars, and culminating in the Mars surface exploration mission.
机译:火星探测车(MEV)架构于2012年1月首次提出。它描述了一种可能的方法,该方法可使用四人乘员并使用化学推进器完成2033或203S机会的长期联合火星表面火星探测任务。 ,现有或近期的技术以及通用的模块化元素,以最大程度地降低开发成本。它利用了一个通用的低温推进阶段(CPS),可以将其配置为地球离去阶段(EDS)或火星转移阶段(MTS)。它结合了地球轨道交会点,无人着陆器的气动制动,火星轨道交会点和火星表面交会点,满足了任务要求。本文的目的是介绍该体系结构的主要增强功能并提供其他设计细节。 MEV架构是由太空发射系统火箭所发射的子组件组装在低地球轨道(LEO)上,包括一个由四名机组人员组成的火星乘员转移车(MCTV),两架冗余的无人火星着陆器转移车(MLTV)和四艘在进行反火星喷射(TMI)之前给CPS LH_2推进剂补足的助力加油车。重新设计了MCTV及其组装顺序,以降低机械复杂性,增强设计通用性,简化LEO组装并提高任务可靠性。每个MLTV都利用一个EDS和一个MTS,并携带三架着陆器作为有效载荷:火星人用着陆器(MPL)为低空火星轨道(LMO)和地面之间的四名机组人员提供双向运输。两个无人火星货运着陆器,一种栖息地变体(MCL-H)和一个漫游者变体(MCL-R),可将单程货物运送到地面。其他MCL-R设计细节将在本文中介绍。 MLTV从LEO逃脱,过渡到火星,并被迫刹车进入高度椭圆形的轨道。着陆器分离,航空制动,使轨道变圆并与LMO中的MCTV会合。本文还将介绍其他的航空制动设计细节。 MCTV利用三个EDS,一个MTS和:(1)Orion多功能乘用车将机组人员从地球运送到LEO,提供推进力,并在标称任务结束时或中止后直接进入,将机组人员送回地球。 (2)三架深空飞行器(DSV),经过改装的MCL-H着陆器,为机组人员提供居住空间,生命维持消耗品,无源生物辐射防护装置和推进装置。 (3)人造重力模块允许MCTV改变其几何形状并旋转以为机组人员产生人造重力,并提供光伏发电和深空通信。 MCTV从LEO逃脱,过渡到火星,强制刹车进入LMO,然后将6个着陆器从MLTV停靠。货机和乘员着陆器执行火星的进入,下降和着陆,然后在地面会合并停靠以形成勘探大本营。地面勘探完成后,机组人员返回MPL中的LMO,与MCTV对接,返回地球。凭借固有的模块化性,MEV体系结构可以实现一种经济的“灵活路径”方法,以逐步实现更雄心勃勃的“垫脚石”人类太阳系探索任务:从在地球和月球轨道飞行开始,一直到近地小行星和天体飞行任务火星的卫星,并最终完成了火星表面探测任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号