首页> 外文OA文献 >Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using 'Bimodal' NTR and LANTR Propulsion
【2h】

Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using 'Bimodal' NTR and LANTR Propulsion

机译:使用“双峰” NTR和LANTR推进技术进行火星/凤凰人类探索的车辆和任务设计选项

摘要

The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.
机译:核热火箭(NTR)具有很高的比冲(1sp约为850-1000 s)能力和引人注​​目的发动机推重比(约3倍),是未来人类执行火星任务的主要推进选择之一。 10)。为了保持在“马格南”重型举升车辆的可用质量和有效载荷体积限制之内,反火星喷射(TMI)需要高性能的推进系统。 NASA目前正在考虑由三台1.5万磅力(klbf)NTR发动机提供动力的可消耗的TMI平台用于其设计参考任务(DRM)。但是,由于在离地阶段,浓缩铀235的燃烧很小(每个NTR堆芯中每33千克中约有10克),一次性使用TMI阶段及其发动机是一种成本高昂且效率低下的使用这个高性能的阶段。通过重新配置发动机以进行推进推力和适度的发电(称为“双峰运行”),可以实现具有推进火星捕获和再利用能力的稳健,多燃烧,“富动力”级。描述了一系列模块化双峰NTR(BNTR)车辆,它们利用由三个15 klbf BNTR供电的公共“核心”级,产生了50 kWe的总电力来支持机组人员的生命,这是一个长期有效的制冷/液化系统,可长期为零-蒸发液态氢(LH2)存储和高数据速率通信。创新的,类似脊柱的“鞍形桁架”设计将核心级和有效载荷元件连接​​起来,并在下方敞开,以便轻松抛弃补充的“直列式”推进剂坦克和应急人员消耗品,以改善车辆性能。使用BNTR转运车的“改进型” DRM需要更少的运输系统元件,减少IMLEO和任务风险,并简化太空操作。通过采取下一个逻辑步骤-使用BNTR将所有有效载荷元素强制捕获到火星轨道-火星轨道上的可用功率增加到150 kWe,而DRM则为30 kWe。强制性捕获还消除了复杂的,更高风险的气动制动和捕获机动性,而使用标准的较低质量的“侵蚀性”壳体,可通过更简单的折返代替。通过替换轻巧的充气式“ TransHab”模块来代替较重的硬壳轮毂模块,进一步提高了“所有BNTR”选件的吸引力。 TransHab的使用带来了BNTR /回地球车(ERV)的推进恢复和再利用的潜力。它还允许机组人员乘坐同一BNTR转移车往返火星,从而将ERV任务的时间缩短了一半,从大约4.7年缩短至2.5年。最后,对于火星的艰难选择,例如火卫一集合点和样本返回任务,体积(而非质量)约束限制了“所有LH2” BNTR平台的性能。使用“ LOX增强型” NTR(LANTR)发动机以0.5的适度的氧氢混合比(MR)运行,有助于在TMI燃烧期间增加“散装”推进剂密度和总推力。在随后的所有燃烧中,双峰LANTR发动机仅在LH2(MR = 0)上运行,以使车辆性能最大化,同时保持在两次Magnum发射的质量限制内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号