首页> 外文会议>International Conference on Multi-Material Micro Manufacture >The Effect of Dynamometer Dynamics on the Measurement Accuracy of Micromachining Forces
【24h】

The Effect of Dynamometer Dynamics on the Measurement Accuracy of Micromachining Forces

机译:测力计动力学对微机械力测量精度的影响

获取原文

摘要

Accurate measurement of micromachining forces is central to gaining fundamental understanding on process mechanics and dynamics of micromachining. Multi-axis dynamometers are commonly used to measure the machining forces in 3D nature. However, measurement of micromachining forces using commercial dynamometers poses critical challenges. In particular, the bandwidth of the dynamometers, as defined by the first resonant frequency of the dynamometer structure, is well below the frequencies arising during micromachining while using ultra-high-speed (UHS) spindles. This paper presents an investigation study on how the structural dynamics response of the cutting force dynamometers affects the accuracy of force measurements at frequencies above the first resonant frequency. To this end, the three-dimensional (3D) force measurement characteristics of a three-axis miniature dynamometer are identified for nine different locations within the dynamometer's workspace up to 25 kHz frequency. For each location, the force measurement characteristics are represented in the form of force-to-force frequency response functions (F2F-FRFs) matrix, which captures both direct (diagonal) and cross-talk (off-diagonal) components. First, the effects of dynamic cross-talks components and force application position on the deviation of measured forces from the actual ones are demonstrated through experiments. Subsequently, those effects are quantitatively analyzed using experimentally determined 3×3 F2F-FRFs matrices. It is concluded that both dynamic cross-talks and force application position significantly affect the accuracy of micromachining forces at high frequencies: thus, future compensation approaches should take these effects into account for high frequency correction of multi-axis dynamometer measurements. As such, the current compensation approaches, which are implemented with only direct (diagonal) terms of F2F-FRFs matrix and a single point F2F-FRFs matrix, will result in poor performance at high frequencies (>4 kHz).
机译:准确测量微机械力是对微孔工艺力学和动力学的基本理解的核心。多轴测量仪通常用于测量3D性质中的加工力。然而,使用商业测量仪测量微加工力的测量构成了关键挑战。特别地,由测力计结构的第一谐振频率限定的测量仪的带宽远远低于微机械线期间在使用超高速(UHS)主轴期间产生的频率。本文介绍了切割力测力器的结构动力学响应如何影响力测量的频率高于第一谐振频率的频率的调查研究。为此,三维(3D)力测量特性的三轴微型测功机的测量特性被识别为测力计工作区内的九个不同位置,高达25 kHz频率。对于每个位置,力测量特性以力 - 频率响应函数(F2F-FRF)矩阵的形式表示,其捕获直接(对角线)和串扰(偏离对角线)组件。首先,通过实验证明了动态交叉谈话组件和力施加位置对来自实际测量力的偏差的影响。随后,使用实验确定的3×3 F2F-FRFS矩阵定量分析这些效果。得出结论,动态交叉谈话和力应用位置都显着影响了高频微机械力的准确性:因此,未来的补偿方法应考虑到多轴测功机测量的高频校正。因此,仅使用F2F-FRFS矩阵的直接(对角线)术语和单点F2F-FRFS矩阵实现的电流补偿方法将导致高频(> 4 kHz)的性能差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号