首页> 外文会议>International Symposium on Large Lithium Ion Battery Technology and Application >Long-term cycling of lithium-polymer electrolyte batteries containing Ionic Liquids
【24h】

Long-term cycling of lithium-polymer electrolyte batteries containing Ionic Liquids

机译:含离子液体的锂聚合物电解质电池的长期循环

获取原文

摘要

Lithium metal polymer batteries (LMPBs) are considered excellent candidates for the next generation power sources because of their high energy density and flexible characteristics (1). Nevertheless, the performance of LMPBs is still limited by the ionic conductivity of the solvent-free PEO-based electrolyte. Conductivity values suitable for practical applications (> 10~(-4) S·cm~(-1)) are approached only at temperatures higher than 70°C, i.e., above the PEO melting point, since high conductivities in solvent-free polymer electrolytes occur only when the polymer is in the amorphous state (2). A very promising approach for overcoming this drawback is represented by the incorporation of room-temperature ionic liquid (RTILs) into the polymer electrolytes. RTILs are molten salts at room temperature that generally consist of an organic cation and an inorganic anion. The main advantages of RTILs towards organic solvents are: non-flammability, negligible vapor pressure, high chemical and thermal stability and, in some cases, hydrophobicity. In the last few years, we have successfully demonstrated (3-8) that addition of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (alkyl = propyl and butyl) ionic liquids to solid, PEO-based electrolytes (SPEs) enhances the ionic conductivity above 10~(-4) S·cm~(-1) at room temperature with a suitable electrochemical stability. In a recent work (9) we have extended the investigation to several ionic liquids of the PYR_(1A)TFSI family only differing for the length and branching of the alkyl side chain. The addition of these ionic liquids to P(EO)_(10)LiTFSI mixtures resulted in polymer electrolyte membranes that exhibited ionic conductivities larger than 10~(-4) S·cm~(-1) at 20°C with good compatibility towards the lithium anode even after prolonged storage time. Also, the addition of RTILs resulted in a reduction of the Li/SPE interfacial resistance. In this work we have extended the characterization of the P(EO)_(10)LiTFSI-PYR_(1A)TFSI polymer electrolytes to full batteries. In particular, P(EO)_(10)LITFSI-PYR_(1n4)TFSI electrolyte films, selected on the basis of their electrochemical characteristics (12), were tested as separators in solid-state, Li/P(EO)_(10)LiTFSI-PYR_(1n4)TFSI/LiFePO_4 cells. First, the anodic electrochemical stability of the ternary polymer electrolytes was tested. The cycling performance of solid-state, Li/P(EO)_(10)LiTFSI-PYR_(1n4)TFSI/LiFePO_4 batteries were extensively investigated from 20°C through 40°C at rates ranging from C/50 to 2C.
机译:锂金属聚合物电池(LMPBS)被认为是下一代电源的优异候选者,因为它们的能量密度高,柔性特性(1)。然而,LMPBS的性能仍然受到无溶剂PEO基电解质的离子电导率的限制。适用于实际应用的电导率(> 10〜(-4)S·cm〜(-1))仅在高于70℃的温度下接近,即高于PEO熔点,因为无溶剂的聚合物中的高导电性仅当聚合物处于无定形状态(2)时仅发生电解质。一种非常有希望的用于克服该缺点的方法是通过将室温离子液体(RTIL)掺入聚合物电解质中来表示。 RTILS在室温下是熔盐,其通常由有机阳离子和无机阴离子组成。 rttils朝向有机溶剂的主要优点是:不易燃性,蒸气压低,化学和热稳定性,并且在某些情况下,疏水性。在过去的几年中,我们已成功证明(3-8)(3-8)加入N-烷基-N-甲基 - 吡咯烷(三氟甲磺酰基)酰亚胺(烷基=丙基和丁基)离子液体,以固体,PEO的电解质(SPES )在室温下,在室温下增强离子电导率,在室温下,具有合适的电化学稳定性。在最近的工作(9)中,我们已经将对Pyr_(1A)TFSI系列的几种离子液体的研究扩展了仅不同的烷基侧链的长度和支化。将这些离子液体加入p(EO)_(10)LITFSI混合物导致聚合物电解质膜,其在20℃下显示出大于10〜(-4)S·cm〜(-1)的离子电导率,具有良好的相容性锂阳极即使在长时间储存​​时间后也是如此。而且,rttils的添加导致锂/ spe界面抗性的降低。在这项工作中,我们已经将P(EO)_(10)LITFSI-PYR_(1A)TFSI聚合物电解质的表征扩展到满电池。特别地,P(EO)_(10)LITFSI-PYR_(1N4)TFSI电解质膜根据其电化学特性(12)选择,作为固态,LI / P(EO)_( 10)LITFSI-PYR_(1N4)TFSI / LIFEPO_4细胞。首先,测试三元聚合物电解质的阳极电化学稳定性。固态的循环性能,Li / P(EO)_(10)LITFSI-PYR_(1N4)TFSI / LifePO_4电池在从C / 50至2C的范围内从20°C至40℃广泛研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号