首页> 外文会议>International Conference on Advanced Ceramics and Composites >ENHANCING THE PASSIVE DAMPING OF PLASMA SPRAYED CERAMIC COATINGS
【24h】

ENHANCING THE PASSIVE DAMPING OF PLASMA SPRAYED CERAMIC COATINGS

机译:增强等离子体喷涂陶瓷涂层的被动阻尼

获取原文

摘要

Hard coatings deposited by plasma spray can dissipate vibratory energy as well as enhance the ability of turbine components to withstand the environment. However, with no other dissipative mechanism, reducing system quality factors (Q) in bending vibration to a target of 100 while increasing thickness no more than 10% requires a material loss modulus of at least 3.7 GPa (0.54 Mpsi) at strains of interest. Such ceramics as magnesium-aluminate spinel, alumina, titama-alumina, and yttria stabilized zirconia have been found to have loss moduli of only 1 -2 GPa. Preliminary work has shown that vacuum infiltrating alumina with a viscoelastic material (VEM) chosen for effectiveness at about 200F (93C) increased the loss modulus at strains of 400 ppm by a factors of 2 at room temperature and 3 at the design temperature. Infiltration of plasma-sprayed titania-alumina with the same VEM showed increases of factors of 3 and 4, respectively. An infiltrate with a higher glass transition temperature enables high damping at higher temperatures. In current work, particles of high temperature viscoelastic material (HTVEM) are co-sprayed with yttria stabilized zirconia. Preliminary results at low levels of strain suggest that the loss modulus of such materials at 1000-1400F (540-760C) may be as much as four times that obtained with the low temperature infiltrate at 93C.
机译:通过等离子体喷射沉积硬涂层可以消散振动能量以及提高涡轮机部件承受环境的能力。然而,没有其他耗散机制,降低系统的品质因子(Q)在弯曲振动的100目标,同时提高厚度不大于10%,需要在感兴趣的菌株至少3.7 GPA(0.54 MPSI)的材料损耗模量。例如陶瓷作为铝酸镁尖晶石,氧化铝,titama - 氧化铝,和氧化钇稳定的氧化锆已被发现具有仅1-2吉帕损失模量。初步工作表明,真空浸润氧化铝,在约200°F(93℃)选择用于有效性的粘弹性材料(VEM)以2的因子在室温和3增加在400ppm的菌株中的损耗模量在设计温度下。等离子喷涂二氧化钛 - 氧化铝具有相同VEM的浸润显示的分别为3和4,因素增加。具有较高的玻璃化转变温度的浸润实现高阻尼在较高温度下。在当前工作中,高温粘弹性材料(HTVEM)的粒子是共喷涂氧化钇稳定的氧化锆。在应变的低水平初步结果表明,在1000-1400F(540-760C)这样的材料的损耗模量可以是高达四倍,与在93℃的低温下浸润获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号