首页> 外文会议>Conference on photonics technology into the 21st century: Semiconductors, microstructures, and nanostructures >Oxide-confined verticle-cavity surface-emitting lasers quantum dots and the Purcell effect: can scaling the mode size improve laser performance?
【24h】

Oxide-confined verticle-cavity surface-emitting lasers quantum dots and the Purcell effect: can scaling the mode size improve laser performance?

机译:氧化物限制椎骨腔表面发射激光器量子点和PURCELL效果:可以缩放模式尺寸改善激光性能?

获取原文

摘要

The development of vertical-cavity surface -emitting lasers (VCSELs) has led to new types of low power, high efficiency light sources for data communication. The small size, low power, and surface-normal emission of VCSELs has enabled relatively dense 2D arrays for highly parallel data communication and optical signal processing. In this paper we examine the issues of device scaling on VCSEL performance. We look specifically at what benefits may be derived from continued scaling of the active volume down to minimum sized dimensions, and what device schemes may be required to obtain the dimensions, a significant improvement in modulation speed is predicted based on the radiative lifetime change due to the Purcell effect. However, several parasitic effects must be controlled in order to realize these benefits. Most important are control of the optical loss due to diffraction or scattering,and control of the electronic losses due to carrier diffusion and surface effects. Novel optical confinement schemes based on oxide- apertures, photonic bandgaps, and/or closely coupled 2D array may be useful for controlling optical loss, while self-assembled quantum dots are attractive for controlling electronic diffusion to dimensions within the minimum optical mode volume.
机译:垂直腔面表面的开发 - 曝光激光器(VCSELS)导致了新型的低功耗,高效光源,用于数据通信。 VCSEL的小尺寸,低功率和表面正常发射具有相对密集的2D阵列,用于高度平行的数据通信和光信号处理。在本文中,我们研究了VCSEL性能的设备缩放问题。我们特别看出可以从持续缩放到最小尺寸尺寸的效益,并且可能需要哪些设备方案来获得尺寸,基于由于辐射的寿命改变预测调制速度的显着改善purcell效果。然而,必须控制几种寄生效应以实现这些益处。最重要的是控制由于衍射或散射引起的光学损耗,以及由于载流子扩散和表面效果的控制。基于氧化物,光子带隙和/或紧密耦合的2D阵列的新型光学限制方案可用于控制光学损耗,而自组装量子点是用于控制最小光学模式体积内的电子扩散到尺寸的吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号