首页> 外文会议>PMSE Symposia >Double Direct Templating of Periodically Nanostructured Inorganic Hollow Microspheres
【24h】

Double Direct Templating of Periodically Nanostructured Inorganic Hollow Microspheres

机译:定期纳米结构无机空心微球的双直接模板

获取原文

摘要

Hollow capsules are both technologically and scientifically interesting. ‘Smart’ nano and micro containers could lead to structures for the controlled release of chemicals and materials that may even mimic properties of living cells.The synthesis of core-shell particles and capsules is a rapidly expanding research direction for these and other applications. Several groups have synthesized and analyzed the permeation of polymeric hollow capsules using a combination of electrostatic or hydrogen bonded layer-by-layer self-assembly, colloid templating and sacrificial core etching. Significant efforts are similarly focused on the synthesis of inorganic mesoporous materials with 1 to 50 nm diameter pores, the ideal size for controlling macromolecule transport and adsorption. Among the numerous approaches for obtaining mesostructured materials, lyotropic liquid crystal templating emerges for its simplicity. This approach uses the self-assembled structure formed by the mixture of an amphiphilic molecule (e.g. a nonionic surfactant) with water to template the formation of a mineral phase. Within the self-assembled structure, there exist chemically and spatially distinct environments with characteristic dimensions of 2 to 10 nm that serve to define the morphology of the mineral phase. Mesostructured semiconductors, including ZnS, oxides, and metals have been successfully templated in hexagonal and lamellar lyotropic liquid crystals. Here we present a ‘double direct templating’ approach to obtain hollow ZnS microspheres perforated with a periodic array of uniform pores. In double direct templating, a lyotropic liquid crystal templates the mineralization of ZnS on the surface of a silica or polystyrene colloidal template. Removal of the templates results in a periodically mesostructured ZnS hollow capsule. We demonstrate the entrapment of Au nanoparticles, and proteins within these microspheres as well as the effect of colloid surface chemistry on the fidelity of the templating process.
机译:空心胶囊都在技术上和科学上有趣。 “智能”的纳米和微容器可能导致结构的控制释放的化学品和材料的结构,这些化学品和材料甚至可能模仿活细胞的性质。核心壳颗粒和胶囊的合成是这些和其他应用的快速扩大的研究方向。使用静电或氢键层的逐层自组装,胶体模板和牺牲芯蚀刻来合成几个组并分析了聚合物中空胶囊的渗透。显着的努力与1至50nm直径1至50nm的无机介孔材料的合成相似,是控制大分子传输和吸附的理想尺寸。在获得腹腔结构化材料的许多方法中,旋流液晶模板的简单性出现。这种方法使用由两亲子分子(例如非离子表面活性剂)的混合物形成的自组装结构与水模板形成矿物相。在自组装结构内,存在化学和空间不同的环境,其特征尺寸为2至10nm,用于定义矿物相的形态。在六边形和层状增感液晶中成功地模板了介质结构,包括ZnS,氧化物和金属,包括ZnS,氧化物和金属。在这里,我们介绍了一种“双直接模板”方法来获得用周期性孔阵列穿孔的空心ZnS微球。在双直接模板中,一个溶水层液晶模板在二氧化硅或聚苯乙烯胶体模板的表面上的矿化矿化。去除模板导致周期性的轴心型ZnS中空胶囊。我们证明了这些微球内的Au纳米粒子和蛋白质的夹杂物以及胶体表面化学对模板过程的保真度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号