首页> 外文会议>ASEE Annual Conference and Exposition >AN INNOVATIVE TWO-TIERED APPROACH TO TEACHING ENGINEERING MATERIALS TO MANUFACTURING ENGINEERING STUDENTS
【24h】

AN INNOVATIVE TWO-TIERED APPROACH TO TEACHING ENGINEERING MATERIALS TO MANUFACTURING ENGINEERING STUDENTS

机译:一种创新的双层方法,用于制造工程学生的工程材料

获取原文

摘要

An introductory materials engineering course is expected to lay the foundation for providing insights into materials behavior so that manufacturing engineers are able to select, optimize, and control appropriate manufacturing processes. However, the task of teaching a materials engineering course is complex and difficult due to the following facts: The subject matter draws upon various disciplines such as physics, chemistry, and mathematics. Students may lack the ability to visualize and rationalize about the abstract three-dimensional arrangement of atoms that make up the structure of materials). Behavior of materials is influenced by phenomena occurring at varying length scales; e.g., nano-scale atomic structure, meso-scale at the level of individual crystals, micro-scale at the level of polycrystalline, multiphase materials to bulk scale at the level of thousands of tons of a material. Students find it difficult to navigate through the correlations between the differing levels of structural detail with materials properties and performance. The relationships between processing, microstructure and properties are highly non-linear. Consequently, considerable material data exists in form of complex diagrams (e.g. a variety of X-Y plots depicting process - property relationships, equilibrium diagrams, continuous cooling transformation -CCT and Time -Temperature -Transformation -TTT diagrams) that are difficult read, interpret and apply. The spectrum of available materials broadens every day from well-established materials such as iron, copper, and aluminum alloys to hybrid, intelligent, bio, and nano materials. The appropriate choice of material for a given application is becoming complex due to contemporary additional requirements of the total life-cycle costing approach, which includes the energy, environmental, and recycling considerations.
机译:的介绍材料工程课程有望打下提供见解材料行为的基础,使制造工程师能够选择,优化和控制相应的制造工艺。然而,教学材料工程课程的任务是复杂和困难的,因为以下事实:应用的题材借鉴了各种学科,如物理,化学和数学。学生可能缺乏可视化约原子组成的结构材料)的抽象的三维排列的能力和合理化。的材料特性是通过在不同长度比例发生的现象的影响;例如,纳米级原子结构,尺度在单个晶体,微尺度的多晶的,多相材料中的几千吨的材料的水平的水平,以散装规模的水平。学生发现难以通过与材料性质和性能的结构细节的不同级别之间的相关性进行导航。之间的处理,显微组织和性能的关系是高度非线性的。因此,相当大的材料数据中的复杂图的形式存在(例如各种XY坐标图描绘处理的 - 属性关系,平衡图,连续冷却转变-CCT和时间 - 温度-Transformation -TTT图)难以读取,解释和应用。可用的材料的光谱拓宽从公认的材料,如铁,铜,和混合,智能,生物,和纳米材料的铝合金的每一天。材料对于给定的应用程序的适当选择是由于总的生命周期成本的方法,其中包括能源,环境的当代附加要求变得复杂,和再循环的考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号