首页> 外文会议>Effects of radiation on nuclear materials and the nuclear fuel cycle >Kinetic Monte Carlo Simulation of Helium-Bubble Evolution in ODS Steels
【24h】

Kinetic Monte Carlo Simulation of Helium-Bubble Evolution in ODS Steels

机译:ODS钢中氦气泡沫进化的动力学蒙特卡罗模拟

获取原文

摘要

Oxide dispersion strengthened (ODS) ferritic/martensitic steels are being developed for high temperature applications for fission reactors and future fusion devices. ODS-Eurofer97 (Fe-9CrWVTa-0.3Y2O3) and ODS-MA957 (Fe-14CrTiMo-0.25Y2O3) have shown promising high temperature mechanical properties, such as tensile strength, toughness, fatigue, and creep rupture. Recent neutron irradiation experiments with simultaneous helium implantation indicate that helium transport is favorably impacted by the nanometer-sized oxide particles, small grain sizes, and high dislocation densities of ODS steels. Simulating helium transport in ODS steels requires a three-dimensional spatially resolved model, which takes into account discrete geometric and microstructural features of the steel. We have developed such a helium transport simulation model using an event kinetic Monte Carlo (EKMC) approach called Monte Carlo simulation of helium-bubble evolution and resolutions (McHEROS). First, a spatially resolved kinetic rate theory is used to establish helium-vacancy cluster and stable helium-bubble nuclei concentrations. The maximum helium-bubble density is then used as an initial condition for randomly distributed matrix bubbles for the EKMC simulation. Migration, coalescence, and trapping of helium bubbles by oxide particles are simulated. Matrix helium bubbles that come into contact with each other are assumed to undergo instantaneous coalescence, which leads to bubble growth. However, migrating bubbles that are intercepted by oxide particles are assumed trapped but can grow through coalescing with newly arriving bubbles. The oxide particles effectively reduce the growth rate of matrix bubbles. Helium-bubble size and spatial distributions of the EKMC simulation are compared with recent experimental measurements. As part of this study, the effectiveness of the ODS microstructure on reducing helium bubble growth rates is presented by comparing EKMC simulations of steels with and without ODS particles. This first application of the McHEROS code has demonstrated the viability of the code as a tool in describing the behavior of helium-bubble transport in ODS alloys.
机译:正在为裂变反应器和未来融合装置进行高温应用而强化(ODS)铁素体/马氏体钢的增强(ODS)。 ODS-EUROFER97(FE-9CRWVTA-0.3Y2O3)和ODS-MA957(FE-14CRTIMO-0.25Y2O3)显示了高温机械性能,例如拉伸强度,韧性,疲劳和蠕变破裂。最近具有同时氦气植入的中子辐射实验表明氦转运有利地受到纳米尺寸氧化物颗粒,小粒度和ODS钢的高位脱位密度的影响。模拟ODS钢中的氦气运输需要三维空间解决模型,这考虑了钢的离散几何和微观结构特征。我们使用称为Monte Carlo模拟的氦气 - 泡沫进化和分辨率(MCheros)的事件动力学蒙特卡罗(EKMC)方法开发了这样一种氦运输仿真模型。首先,使用空间解决的动力学率理论来建立氦空位簇和稳定的氦气 - 泡核核浓度。然后将最大氦气气泡密度用作用于EKMC仿真的随机分布的矩阵气泡的初始条件。模拟氧化物颗粒氦气泡沫的迁移,聚结和捕获。假设彼此接触的基质氦气泡沫经历瞬时聚结,这导致泡沫生长。然而,假定捕获氧化物颗粒截取的迁移气泡,但可以通过结合的聚结来生长。氧化物颗粒有效地降低了基质气泡的生长速率。与最近的实验测量相比,EKMC仿真的氦气泡沫尺寸和空间分布。作为本研究的一部分,通过比较具有和无ODS颗粒的钢的EKMC模拟来介绍ODS微观结构对减少氦气泡生长速率的有效性。第一次应用MCcheros代码已经证明了代码的可行性作为描述ODS合金中氦气泡沫运输行为的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号